SUMMARYReproductive success in many animals depends on the efficient production of and response to sexual signals. In insects, plasticity in sexual communication is predicted in species that experience periods of reproductive inactivity when environmental conditions are unsuitable for reproduction. Here, we study a long-lived moth Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) that is reproductively inactive from eclosion in summer until the following spring. Male sex pheromone responsiveness is plastic and corresponds with female receptivity. Pheromone response plasticity has not been studied in a moth with an extended period of reproductive inactivity. In this study, we ask whether male antennal response and flight behavior are plastic during different stages of reproductive inactivity and whether these responses are regulated by juvenile hormone. Antennal response to the pheromone blend is significantly reduced in reproductively inactive males tested in the summer and autumn as compared with reproductively active males tested in the spring. Reproductively inactive autumn but not summer males show lower antennal responses to individual pheromone components compared with spring males. Treatment with methoprene enhances antennal response of autumn but not summer males to high doses of the pheromone blend. Behavioral response is induced by methoprene treatment in males treated in the autumn but not in the summer. Plasticity of pheromone response in C. fraxinella is regulated, at least in part, by the peripheral nervous system. Antennal and behavioral response to pheromone differed in reproductively active and inactive males and increased with methoprene treatment of inactive males.
Reproductive diapause enables long‐lived insects to time mating with environmental conditions suitable for offspring development. Plasticity in the perception of pheromones used in sexual communication may enable mate‐finding at the appropriate time of year. The moth Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) undergoes a 9‐month reproductive diapause, during which the male response to pheromone is plastic and is highest during the period of reproductive activity. The mechanisms controlling this pheromone response plasticity are not well‐understood, and the aim of the present study is to determine the main factors involved. In the present study, the impact of temperature, photoperiod, juvenile hormone analogue (JHA) and adult nutrition on diapause termination are tested using electroantennogram (EAG) and behavioural response to pheromone in male C. fraxinella. Eclosion in a state of reproductive diapause occurs in most males; diapause is maintained under short‐day or cool conditions indoors, or under natural conditions outdoors. Exposure to long‐day, warm conditions over a period of 4 weeks causes a small number of males to become behaviourally responsive to pheromone; a larger number of males become behaviourally responsive over a period of 3 months of post‐eclosion. Treatment with a JHA impacts male EAG and the behavioural response to pheromone during the period of reproductive diapause. A carbohydrate food source is not required by reproductively active adult male C. fraxinella to respond to pheromone and express mate location behaviours. The main factors involved in controlling male pheromone response plasticity and the implications of these factors for the C. fraxinella population in its expanded range are discussed.
Reproductive diapause is a strategy employed by some insects to coordinate reproduction with the appropriate environmental conditions for mate location and offspring development. Male Caloptilia fraxinella Ely (Lepidoptera: Gracillariidae) eclose in July in reproductive diapause, and remain unmated until May of the next year, when they emerge from overwintering sites in a reproductively active state. The present study assesses characteristics of male sex accessory glands (SAG) throughout the adult life stage when males are reproductively active and in early and late reproductive diapause. Male SAG are longer and positively correlate with moth body size when males are reproductively active in the spring compared with males in reproductive diapause in the summer and autumn. Male SAG also contain significantly more protein during the period of reproductive activity than during reproductive diapause. Access to a carbohydrate nutrition source does not impact male SAG length or protein concentration when males are reproductively active in the spring. Treatment with a Juvenile Hormone analogue in the autumn, but not the summer, tends to increase the total protein concentration compared with that of untreated control moths.
In insects that exhibit a period of delayed reproduction, the timing of mating and reproduction is controlled by environmental conditions that regulate endogenous factors such as hormones and biogenic amines (BAs). Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) undergoes a 9-month reproductive diapause from adult eclosion in the summer until diapause termination the following spring when adults mate. Male response to female sex pheromone is plastic, and is most acute when moths are reproductively active. The aim of this study is to further elucidate the mechanisms involved in the regulation of male response to pheromone in C. fraxinella, and to test whether the application of BAs with and without a juvenile hormone analogue (JHA) to males in different physiological states impacts pheromone responsiveness, as measured by electroantennogram and wind tunnel bioassays. Treatment of male C. fraxinella in reproductive diapause with one application of a JHA induces the highest subsequent pheromone response in the fall, but does not alter pheromone response earlier in reproductive diapause in the summer. The JHAs methoprene and pyriproxyfen similarly enhance pheromone response in the fall. Treatment with methoprene alone or in combination with one of the BAs octopamine, dopamine or serotonin increases male pheromone responsiveness in the fall. The increase in pheromone response can be attributed to methoprene only, as treatment with any of the BAs alone does not enhance male response to pheromone. Biogenic amine treatment lowers male responsiveness to pheromone in some experiments, indicating that there may be a role for BAs in maintaining low pheromone response during reproductive diapause in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.