The formation of enduring declarative-like memories engages a dialog between the hippocampus and the prefrontal cortex (PFC). Electrophysiological and neuroanatomical evidence for reciprocal connections with both of these structures makes the reuniens and rhomboid nuclei (ReRh) of the thalamus a major functional link between the PFC and hippocampus. Using immediate early gene imaging (c-Fos), fiber-sparing excitotoxic lesion, and reversible inactivation in rats, we provide evidence demonstrating a contribution of the ReRh to the persistence of a spatial memory. Intact rats trained in a Morris water maze showed increased c-Fos expression (vs home cage and visible platform groups: Ͼ500%) in the ReRh when tested in a probe trial at a 25 d delay, against no change at a 5 d delay; behavioral performance was comparable at both delays. In rats subjected to excitotoxic fiber-sparing NMDA lesions circumscribed to the ReRh, we found normal acquisition of the water-maze task (vs sham-operated controls) and normal probe trial performance at the 5 d delay, but there was no evidence for memory retrieval at the 25 d delay. In rats having learned the water-maze task, lidocaine-induced inactivation of the ReRh right before the probe trial did not alter memory retrieval tested at the 5 d or 25 d delay. Together, these data suggest an implication of the ReRh in the long-term consolidation of a spatial memory at the system level. These nuclei could then be a key structure contributing to the transformation of a new hippocampal-dependent spatial memory into a remote one also depending on cortical networks.
The hippocampus is involved in spatial memory processes, as established in a variety of species such as birds and mammals including humans. In humans, some hippocampal-dependent memory functions may be lateralized, the right hippocampus being predominantly involved in spatial navigation. In rodents, the question of possible lateralization remains open. Therefore, we first microdissected the CA1 subregion of the left and right dorsal hippocampi for analysis of mRNA expression using microarrays in rats having learnt a reference memory task in the Morris water-maze. Relative to untrained controls, 623 genes were differentially expressed in the right hippocampus, against only 74 in the left hippocampus, in the rats that had learnt the hidden platform location. Thus, in the right hippocampus, 299 genes were induced, 324 were repressed, and about half of them participate in signaling and transport, metabolism, and nervous system functions. In addition, most differentially expressed genes associated with spatial learning have been previously related to synaptic plasticity and memory. We then subjected rats to unilateral (left or right) or bilateral reversible functional inactivations in the dorsal hippocampus; lidocaine was infused either before each acquisition session or before retrieval of a reference spatial memory in the Morris water maze. We found that after drug-free acquisition, right or bilateral lidocaine inactivation (vs. left, or bilateral phosphate buffered saline (PBS) infusions) of the dorsal hippocampus just before a delayed (24 h) probe trial impaired performance. Conversely, left or bilateral hippocampus inactivation (vs. right, or bilateral PBS infusions) before each acquisition session weakened performance during a delayed, drug-free probe trial. Our data confirm a functional association between transcriptional activity within the dorsal hippocampus and spatial memory in the rat. Further, they suggest that there could be a leftward bias of hippocampal functions in engram formation or information transfer, and a rightward bias in spatial memory storage/retrieval processes.
According to systems consolidation, as hippocampal-dependent memories mature over time, they become additionally (or exclusively) dependent on extra-hippocampal structures. We assessed the recruitment of hippocampal and cortical structures on remote memory retrieval in a performance-degradation resistant (PDR; no performance degradation with time) versus performance-degradation prone (PDP; performance degraded with time) context. Using a water-maze task in two contexts with a hidden platform and three control conditions (home cage, visible platform with or without access to distal cues), we compared neuronal activation (c-Fos imaging) patterns in the dorsal hippocampus and the medial prefrontal cortex (mPFC) after the retrieval of recent (5 days) versus remote (25 days) spatial memory. In the PDR context, the hippocampus exhibited greater c-Fos protein expression on remote than recent memory retrieval, be it in the visible or hidden platform group. In the PDP context, hippocampal activation increased at the remote time point and only in the hidden platform group. In the anterior cingulate cortex, c-Fos expression was greater for remote than for recent memory retrieval and only in the PDR context. The necessity of the mPFC for remote memory retrieval in the PDR context was confirmed using region-specific lidocaine inactivation, which had no impact on recent memory. Conversely, inactivation of the dorsal hippocampus impaired both recent and remote memory in the PDR context, and only recent memory in the PDP context, in which remote memory performance was degraded. While confirming that neuronal circuits supporting spatial memory consolidation are reorganized in a time-dependent manner, our findings further indicate that mPFC and hippocampus recruitment (i) depends on the content and perhaps the strength of the memory and (ii) may be influenced by the environmental conditions (e.g., cue saliency, complexity) in which memories are initially formed and subsequently recalled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.