Abstract-In hypertension, angiotensin (Ang) II is a critical mediator of cardiovascular remodeling, whose prominent features include myocardial and vascular media hypertrophy, perivascular inflammation, and fibrosis. The signaling pathways responsible for these alterations are not completely understood. Here, we investigated the importance of calpains, calcium-dependent cysteine proteases. We generated transgenic mice constitutively expressing high levels of calpastatin, a calpain-specific inhibitor. Chronic infusion of Ang II led to similar increases in systolic blood pressure in wild-type and transgenic mice. In contrast, compared with wild-type mice, transgenic mice displayed a marked blunting of Ang II-induced hypertrophy of left ventricle. Ang II-dependent vascular remodeling, ie, media hypertrophy and perivascular inflammation and fibrosis, was also limited in both large arteries (aorta) and small kidney arteries from transgenic mice as compared with wild type. In vitro experiments using vascular smooth muscle cells showed that calpastatin transgene expression blunted calpain activation by Ang II through epidermal growth factor receptor transactivation. In vivo and in vitro models of inflammation showed that impaired recruitment of mononuclear cells in transgenic mice was attributable to a decrease in both the release of and the chemotactic response to monocyte chemoattractant protein-1. Finally, results from collagen synthesis assay and zymography suggested that limited fibrogenesis was attributable to a decrease in collagen deposition rather than an increase in collagen degradation.
Stimulation of macrophages with endotoxin and/or cytokines is responsible for the expression of the inducible isoform of nitric oxide synthase (iNOS). Because macrophages are exposed to low pH within the microenvironment of inflammatory lesions, the potential role of acidic pH as an additional regulator of iNOS was investigated. Substitution of the culture medium of rat peritoneal macrophages at pH 7.4 with medium at pH 7.0 up-regulated iNOS activity, as reflected by a 2.5-fold increase in nitrite accumulation. The increase in iNOS activity was associated with a similar increase in iNOS mRNA expression that reflected an increase in iNOS mRNA synthesis rather than stability. Low environmental pH-induced iNOS gene transcription involved the activation of nuclear factor-B (NF-B) transcription factor since exposure of macrophages to low environmental pH both increased NF-B binding activity in the nucleus and enhanced NF-B-driven reporter gene expression. In addition, treatment of macrophages with pyrrolidine dithiocarbamate or n-acetyl-leucinyl-leucinyl-norleucinal, two drugs preventing NF-B translocation to the nucleus, canceled low pH-induced nitrite accumulation. The overall mechanism required the synthesis of tumor necrosis factor ␣ (TNF␣). Indeed, 1) elevated TNF␣ bioactivity was observed in the medium of macrophages exposed to pH 7.0, and 2) incubation of macrophages with a neutralizing anti-TNF␣ antibody impaired both NF-B activation and nitrite accumulation in response to acid challenge. In summary, exposure of macrophages to acidic microenvironment in inflammatory lesions leads to the up-regulation of iNOS activity through the activation of NF-B.Acidosis is a hallmark of both ischemia and inflammation processes. The decrease of pH in tissue ischemia is secondary to the release of H ϩ during ATP hydrolysis and to the accumulation of CO 2 (1). The acidic environment in inflammatory lesions and abscesses (2) is due to increased metabolic acid generation during cell activation. This originates primarily from the hexose monophosphate shunt, by the dissociation of hydrated CO 2 (3).In most cases, acidosis occurs along with nitric oxide (NO) 1 generation. In ischemia, NO generation is due in one part to the acidification and reduction of the large pool of nitrite present within the tissue (4). In inflammatory processes, macrophage exposure to bacterial lipopolysaccharide (LPS) or cytokines such as tumor necrosis factor ␣ (TNF␣) and interferon-␥ (IFN-␥) causes the expression of the inducible isoform of NO synthase (NOS II or iNOS) that is responsible for high output production of NO (5). The expression of iNOS is regulated mainly at the transcriptional level. Analyses of the murine iNOS promoter have shown the presence of numerous consensus sequences for the binding of transcription factors (6, 7), of which nuclear factor-B (NF-B) (8), interferon regulatory factor-1 (IRF-1) (9), and signal transducer and activator of transcription (STAT) 1␣ (10) are functionally important for iNOS induction. NF-B is composed of a p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.