Upon encounter of a CTL with a target cell carrying foreign Ags, the TCR internalizes with its ligand, the peptide-MHC class I complex. However, it is unclear how this can happen mechanistically because MHC molecules are anchored to the target cell’s surface via a transmembrane domain. By using antigenic peptides and lipids that were fluorescently labeled, we found that CTLs promptly capture target cell membranes together with the antigenic peptide as well as various other surface proteins. This efficient and specific capture process requires sustained TCR signaling. Our observations indicate that this process allows efficient acquisition of the Ag by CTL, which may in turn regulate lymphocyte activation or elimination.
Metastatic melanoma is the most aggressive skin cancer. Recently, phenotypically distinct subpopulations of tumor cells were identified. Among them, ABCB5-expressing cells were proposed to display an enhanced tumorigenicity with stem cell-like properties. In addition, ABCB5+ cells are thought to participate to chemoresistance through a potential efflux function of ABCB5. Nevertheless, the fate of these cells upon drugs that are used in melanoma chemotherapy remains to be clarified. Here we explored the effect of anti-melanoma treatments on the ABCB5-expressing cells. Using a melanoma xenograft model (WM266-4), we observed in vivo that ABCB5-expressing cells are enriched after a temozolomide treatment that induces a significant tumor regression. These results were further confirmed in a preliminary study conducted on clinical samples from patients that received dacarbazine. In vitro, we showed that ABCB5-expressing cells selectively survive when exposed to dacarbazine, the reference treatment of metastatic melanoma, but also to vemurafenib, a new inhibitor of the mutated kinase V600E BRAF and other various chemotherapeutic drugs. Our results show that anti-melanoma chemotherapy might participate to the chemoresistance acquisition by selecting tumor cell subpopulations expressing ABCB5. This is of particular importance in understanding the relapses observed after anti-melanoma treatments and reinforces the interest of ABCB5 and ABCB5-expressing cells as potential therapeutic targets in melanoma.
Previous studies demonstrated that the polypeptide diazepam binding inhibitor (DBI) and its receptor, the peripheral-type benzodiazepine receptor (PBR), are involved in the regulation of steroid biosynthesis and that one site of PBR action resides in mitochondria. In the present investigation, evidence is presented that a functional form of PBR is also present at the cell surface. First, PBR was immunolocalized in the rat testis using biotin-streptavidin peroxidase immunocytochemistry, and results revealed that PBR was present exclusively in the interstitial Leydig cells. Next, the distribution of PBR in MA-10 Leydig cells was further examined using confocal microscopy. MA-10 cells were either fixed and immunostained or fixed/permeabilized and immunostained for PBR, followed by generation of confocal microscope optical sections, three-dimensional reconstructions of these sections, and then generation of vertical confocal sections of the three-dimensional reconstruction. In the fixed/unpermeabilized cells, PBR immunostaining at the cell surface was clearly evident, whereas in the fixed/permeabilized cells, intracellular PBR distribution was more robust. These results suggest that the plasma membrane fraction of the receptor could mediate the action of extracellular PBR ligands on Leydig cell function. Next, we examined whether DBI, the naturally occurring PBR ligand, is secreted by testicular cells and whether it could activate the cell surface PBR. Immunolocalization of DBI demonstrated that it was present in both Leydig and Sertoli cells. Further, using an immunoblot assay, we demonstrated that DBI is present in rat testicular interstitial fluid. Metabolic labeling of cultured immature rat Sertoli cells and MA-10 mouse tumor Leydig cells, followed by immunoprecipitation of the secreted proteins with an anti-DBI antiserum, demonstrated that both Leydig and Sertoli cells secrete DBI and could serve as a cell source for the interstitial fluid DBI. Then, we partially purified the DBI present in conditioned medium and interstitial fluid by reverse phase chromatography and demonstrated it to be bioactive, based on displacement of a radiolabeled benzodiazepine (Ro5-4864)-specific ligand for PBR; pronase treatment of different preparations eliminated all bioactivity. We then examined the effects of DBI on Leydig cell function. DBI added to MA-10 cells affected DNA synthesis and cell growth in a biphasic manner; at low concentrations (1 nM), DBI was mitogenic, increasing [3H]thymidine incorporation and cell numbers by 30-40%, while at high concentrations (1 microM), DBI inhibited cell growth (30-40%). Similar effects on cell growth were obtained using the benzodiazepine Ro5-4864.
SummaryThis paper describes the characteristics of a binding site for the major, lipo-oligossccharide Nod factor of Rhizobium meliloti in roots of the symbiotic host plant, Medicago truncatula. Chemically synthesized NodRm-IV(Ac, S, C16:2) was labelled by tritiation to a specific activity of 56 Ci mmo1-1 and this ligand was shown to be biologically active in the root hair deformation assay at 10 -11 M. Binding of the ligand to a particulate fraction from roots of M. truncatula was found to be saturable and reversible with an affinity (K d) of 86 nM and the binding characteristics were consistent with a single class of binding sites. Competition with modified Nod factors showed that the binding was independent of both the (~acotyl and the suIphyl group and did not depend on the uncaturation of the fatty acid. However, both moieties of the lipooligossccharide are required for high-affinity binding since tetra-N-acatyl-chitotetraose and palmitate were found to be poor competitors of Iigand binding. A binding site with analogous characteristics was also found in a similarly prepared particulate fraction of tomato roots. This binding site for Nod factors, termed NFBS1, which is present in both a leguminous and a non-leguminous plant, may have a more general role than symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.