A limitation for a universal use of T7 RNA polymerase for in vitro tRNA transcription lies in the nature of the often unfavorable 5P-terminal sequence of the gene to be transcribed. To overcome this drawback, a hammerhead ribozyme sequence was introduced between a strong T7 RNA polymerase promoter and the tDNA sequence. Transcription of this construct gives rise to a`transzyme' molecule, the autocatalytic activity of which liberates a 5P-OH tRNA transcript starting with the proper nucleotide. The method was optimized for transcription of yeast tRNA yr , starting with 5P-C I , and operates as well for yeast tRNA esp with 5P-U I . Although the tRNAs produced by the transzyme method are not phosphorylated, they are fully active in aminoacylation with k t and K m parameters quasi identical to those of their phosphorylated counterparts.z 1998 Federation of European Biochemical Societies.
Residue G-1 and discriminator base C73 are the major histidine identity elements in prokaryotes. Here we evaluate the importance of these two nucleotides in yeast histidine aminoacylation identity. Deletion of G-1 in yeast tRNA(His) transcript leads to a drastic loss of histidylation specificity (about 500-fold). Mutation of discriminator base A73, common to all yeast tRNA(His) species, into G73 has a more moderate but still significant effect with a 22-fold decrease in histidylation specificity. Changes at position 36 in the anticodon loop has negligible effect on histidylation. The role of residues -1 and 73 for specific aminoacylation by yeast HisRS was further investigated by studying the histidylation capacities of seven minihelices derived from the Turnip Yellow Mosaic Virus tRNA-like structure. Changes in the nature of nucleotides -1 and 73 modulate this activity but do not suppress it. The optimal mini-substrate for HisRS presents a G.A mismatch at the position equivalent to residues G-1.A73 in yeast tRNA(His), confirms the importance of this structural feature in yeast histidine identity. The fact that the minisubstrates contain a pseudoknot in which position -1 is mimicked by an internal nucleotide from the pseudoknot highlights further the necessity of a stacking interaction of this position over the amino acid accepting branch of the tRNA during the aminoacylation process. Individual transplantation of G-1 or A73 into yeast tRNA(Asp) transcript improves the histidylation efficiency of the engineered tRNA(Asp). However, a tRNA(Asp) transcript presenting simultaneously both residues G-1 and A73 becomes a less good substrate for HisRS, suggesting the importance of the structural context and/or the presence of antideterminants for an optimal expression of these two identity elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.