Recurrent chromosomal rearrangements have not been well characterized in common carcinomas. We used a bioinformatics approach to discover candidate oncogenic chromosomal aberrations on the basis of outlier gene expression. Two ETS transcription factors, ERG and ETV1, were identified as outliers in prostate cancer. We identified recurrent gene fusions of the 5' untranslated region of TMPRSS2 to ERG or ETV1 in prostate cancer tissues with outlier expression. By using fluorescence in situ hybridization, we demonstrated that 23 of 29 prostate cancer samples harbor rearrangements in ERG or ETV1. Cell line experiments suggest that the androgen-responsive promoter elements of TMPRSS2 mediate the overexpression of ETS family members in prostate cancer. These results have implications in the development of carcinomas and the molecular diagnosis and treatment of prostate cancer.
Prostate cancer is a common and clinically heterogeneous disease with marked variability in progression. The recent identification of gene fusions of the 5 ¶-untranslated region of TMPRSS2 (21q22.3) with the ETS transcription factor family members, either ERG (21q22.2), ETV1 (7p21.2), or ETV4 (17q21), suggests a mechanism for overexpression of the ETS genes in the majority of prostate cancers. In the current study using fluorescence in situ hybridization (FISH), we identified the TMPRSS2:ERG rearrangements in 49.2% of 118 primary prostate cancers and 41.2% of 18 hormone-naive lymph node metastases. The FISH assay detected intronic deletions between ERG and TMPRSS2 resulting in TMPRSS2:ERG fusion in 60.3% (35 of 58) of the primary TMPRSS2:ERG prostate cancers and 42.9% (3 of 7) of the TMPRSS2:ERG hormone-naive lymph node metastases. A significant association was observed between TMPRSS2:ERG rearranged tumors through deletions and higher tumor stage and the presence of metastatic disease involving pelvic lymph nodes. Using 100K oligonucleotide single nucleotide polymorphism arrays, a homogeneous deletion site between ERG and TMPRSS2 on chromosome 21q22.2-3 was identified with two distinct subclasses distinguished by the start point of the deletion at either 38.765 or 38.911 Mb. This study confirms that TMPRSS2:ERG is fused in approximately half of the prostate cancers through deletion of genomic DNA between ERG and TMPRSS2. The deletion as cause of TMPRSS2:ERG fusion is associated with clinical features for prostate cancer progression compared with tumors that lack the TMPRSS2:ERG rearrangement. (Cancer Res 2006; 66(17): 8337-41)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.