The Paraiba do Sul (PSR) and Guandu Rivers (GR) water diversion system (120 km long) is located in the main industrial pole of Brazil and supplies drinking water for 9.4 million people in the metropolitan region of Rio de Janeiro. This study aims to discern the trace metals dynamics in this complex aquatic system. We used a combined approach of geochemical tools such as geochemical partitioning, Zn isotopes signatures, and multivariate statistics. Zinc and Pb concentrations in Suspended Particulate Matter (SPM) and sediments were considerably higher in some sites. The sediment partition of As, Cr, and Cu revealed the residual fraction (F4) as the main fraction for these elements, indicating low mobility. Zinc and Pb were mostly associated with the exchangeable/carbonate (F1) and the reducible (F2) fractions, respectively, implying a higher susceptibility of these elements to being released from sediments. Zinc isotopic compositions of sediments and SPM fell in a binary mixing source process between lithogenic (δ66/64ZnJMC ≈ + 0.30‰) and anthropogenic (δ66/64ZnJMC ≈ + 0.15‰) end members. The lighter δ66/64ZnJMC values accompanied by high Zn concentrations in exchangeable/carbonate fraction (ZnF1) enable the tracking of Zn anthropogenic sources in the studied rivers. Overall, the results indicated that Hg, Pb, and Zn had a dominant anthropogenic origin linked to the industrial activities, while As, Cr, and Cu were mainly associated with lithogenic sources. This work Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.demonstrates how integrating geochemical tools is valuable for assessing geochemical processes and mixing source effects in anthropized river watersheds.
To evaluate the total mercury accumulation (THg) in the Descoberto river basin environmental protection area (DREPA), nine sediment and water samples were collected from the Descoberto reservoir (lentic environment), and 23 in its tributaries (lotic environment), which are located in a densely urbanized area within the Descoberto river watershed, Brazil. The following physicochemical parameters of water were determined: dissolved oxygen (DO); hydrogen potential (pH); total dissolved solids (TDS); nitrate (NO3−); chloride (Cl−); temperature (T); sulfate (SO42−), and in sediment, the concentration of total mercury (THg) and volatile material (VM) was determined. THg concentrations in sediments showed a significant difference (p = 0.002) between tributaries (0.03 µg g−1 ± 0.02) and reservoir (0.08 µg g−1 ± 0.04), indicating accumulation in the lentic environment. Most of the results evaluated for ecotoxicological risks presented values below the concentration, at which adverse effects would rarely be observed, ERL (effects range low). However, in relation to the enrichment factor (EF), applied to identify the anthropogenic contribution, the results indicate that most of the samples are moderately polluted through atmospheric deposition due to vehicular traffic and agriculture. These results show that the likelihood of methylation in the lentic environment is higher than in the lotic environment.
Water bodies are containers that receive a large load of pollutants through the release of domestic, industrial, and agricultural effluents. With this focus, this work aimed to conduct a temporal-spatial variability study in the Rio de Ondas Hydrographic Basin through multivariate statistical analysis. For this, seventeen collection sites were established in four stations along the Rio de Ondas and its tributaries between 2017 and 2018. Ionic chromatography with suppressed conductivity was used for ions determination, while ICP-OES determined metals' total concentrations. The land use and occupation assessment between 1985 and 2015 was conducted using images from Landsat 5 and 8 satellites and the descriptive and multivariate analysis of the data using version 10 of the Statistica software. The results showed that, in thirty years, there was a growth of 569% of agricultural activities in the watershed area, with significant suppression of native vegetation, favoring the transport of pollutants to rivers. Ca2+, PO42−, Al, Cu, and Zn concentrations showed a statistically significant difference between the seasons, with higher medians in the rainy season. Rainy season influenced the formation of three groups in the PCA, consisting of electrical conductivity, salinity, TDS, and PO42− (group 1); temperature, Fe, SO42− and Cl− (group 2); and Ca2+, Mg2+, Na+, and HCO3− (group 3). The strong correlation between parameters of each group indicates anthropic influence on the watershed's water quality. However, levels are within the potability standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.