Background:
This study presents the synthesis and multi-target behavior of the new 5'-hydroxy-3-(chalcogenyl-triazoyl)-thymidine and the biological evaluation of these compounds as antioxidant and anti-HIV agents.
Objective:
Antiretroviral therapy induces oxidative stress. Based on this, the main objective of this manuscript is the preparation of compounds that combine anti-HIV and antioxidant activities.
Methods:
The compounds were prepared from commercially available AZT, through a copper-catalyzed Huisgen 1,3-dipolar cycloadditions exploiting the AZT azide group and chalcogenyl alkynes.
Results:
The chalcogenium-AZT derivatives were obtained in good yields via click chemistry. The compounds evaluated showed antioxidant and anti-HIV activity. Additionally, in vivo toxicity of this class of compounds was also evaluated and the representative nucleoside did not change the survival, behavior, biochemical hepatic, and renal markers compared to the control mice.
Conclusion:
Data suggest the feasibility of modifying the AZT nucleus with simple organochalcogen fragments, exploring the reactivity of the azide group via 1,3-dipolar Huisgen cycloaddition reaction. The design of these new compounds showed the initially desired biological activities.
The synthesis of a new class of 5’-arylchalcogenyl-3’-N-(E)-feruloyl-3’-amino-3’-deoxythymidine (AFAT) derivatives is disclosed. The compounds were obtained in good yields through an amidation reaction employing soft conditions. Both antitumoral activity against...
Zidovudine (AZT) is the most commonly prescribed antiviral drug for the treatment of human immunodeficiency virus (HIV) infection. However, its chronic administration causes toxic side effects limiting its use. This study aimed to evaluate the toxicity of different concentrations of AZT and novel chalcogen derivatives (7A, 7D, 7G, 7K, 7M) on locomotion, mitochondrial dysfunction, acetylcholinesterase (AChE) activity, and production of reactive oxygen species (ROS) in adult Drosophila melanogaster. Our results show that AZT and its derivative 7K at a concentration of 10 μM impaired flies' locomotor behavior. Furthermore, AZT and the derivatives 7K, 7A, and 7M induced mitochondrial dysfunction observed by a decrease in oxygen flux through mitochondrial complexes I and II. Neither of the compounds tested affected AChE activity or ROS production in flies. According to these data, AZT derivatives presented the following decreasing order of toxicity: 7K > AZT > 7G > 7A > 7M > 7D. Based on the chemical structure, it is possible to infer that the presence of the seleno‐phenyl group in 7A and 7G increases their toxicity compared to compounds 7D and 7M. In addition, compounds 7G, 7M, and 7K with three carbon atoms as spacer were more toxic than analogs containing one carbon atom (7A and 7D). Finally, the insertion of a p‐methoxyl group enhances toxicity (7K). Based on these results, excepting 7K, all other chalcogen derivatives presented lower toxicity than AZT and are potential drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.