Rationale:In regenerative therapy for ischemic heart disease, use of both autologous and allogeneic stem cells has been investigated. Autologous cell can be applied without immunosuppression, but availability is restricted, and cells have been exposed to risk factors and aging. Allogeneic cell therapy enables preoperative production of potent cell lines and immediate availability of cell products, allowing off-the-shelf therapy. It is unknown which cell source is preferred with regard to improving cardiac function.Objective: We performed a meta-analysis of preclinical data of cell therapy for ischemic heart disease. Methods and Results:We conducted a systematic literature search to identify publications describing controlled preclinical trials of unmodified stem cell therapy in large animal models of myocardial ischemia. Data from 82 studies involving 1415 animals showed a significant improvement in mean left ventricular ejection fraction in treated compared with control animals (8.3%, 95% confidence interval, 7.1-9.5; P<0.001). Meta-regression revealed a similar difference in left ventricular ejection fraction in autologous (8.8%, 95% confidence interval, 7.3-10.3; n=981) and allogeneic (7.3%, 95% confidence interval, 4.4-10.2, n=331; P=0.3) cell therapies. Conclusions: Autologous and allogeneic cell therapy for ischemic heart disease show a similar improvement in
Aims Pathological cardiac remodeling is characterized by cardiomyocyte hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here we aimed for a more detailed view on molecular changes driving maladaptive cardiomyocyte hypertrophy to aid in the development of therapies to reverse pathological remodeling. Methods and Results Utilizing cardiomyocyte-specific reporter mice exposed to pressure overload by transverse aortic banding and cardiomyocyte isolation by flow cytometry, we obtained gene expression profiles of hypertrophic cardiomyocytes in the more immediate phase after stress, and cardiomyocytes showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically upregulated in the cardiomyocytes during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human cardiomyocytes induced secretion of NT pro-BNP and recapitulated the upregulation of these genes, indicating conservation of the upregulation in failing cardiomyocytes. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human heart failure, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary cardiomyocytes attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodeling of cardiomyocytes. Conclusions Using cardiomyocyte-specific transcriptomic analysis we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the cardiomyocyte stress response. Translational perspective Maladaptive cardiac remodeling is a consequence of pathological hypertrophy which includes cardiomyocytes changes and a decline in contractility. Our cardiomyocyte-specific gene expression studies revealed a gene program specific for pathological hypertrophy that is conserved in diseased mouse and human cardiomyocytes. We identified PFKP as a novel gene actively involved in cardiomyocyte remodeling, indicating PFKP as a potential therapeutic target to block the progression of heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.