Dissolved carbon (C) leaching in and from soils plays an important role in C transport along the terrestrial-aquatic continuum. However, a global overview and analysis of dissolved carbon in soil solutions, covering a wide range of vegetation types and climates, is lacking. We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions, including potential governing factors, with 762 entries from 351 different sites covering a range of climate zones, land cover types and soil classes. Using this database we develop regression models to calculate topsoil concentrations, and concentrations versus depth in the subsoil at the global scale. For DIC, the lack of a proportional globally distributed cover inhibits analysis on a global scale. For DOC, annual average concentrations range from 1.7 to 88.3 (median = 25.27) mg C/L for topsoils (n = 255) and from 0.42 to 372.1 (median = 5.50) mg C/L for subsoils (n = 285, excluding lab incubations). Highest topsoil values occur in forests of cooler, humid zones. In topsoils, multiple regression showed that precipitation is the most significant factor. Our global topsoil DOC model ($${\mathrm{R}}^{2}=0.36$$ R 2 = 0.36 ) uses precipitation, soil class, climate zone and land cover type as model factors. Our global subsoil model describes DOC concentrations vs. depth for different USDA soil classes (overall ($${\mathrm{R}}^{2}=0.45$$ R 2 = 0.45 ). Highest subsoil DOC concentrations are calculated for Histosols.
Rivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20th century using the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples river basin hydrology, environmental conditions, and C delivery with C flows from headwaters to mouths. The results show heterogeneous spatial distribution of dissolved inorganic carbon (DIC) concentrations in global inland waters with the lowest concentrations in the tropics and highest concentrations in the Arctic and semiarid and arid regions. Dissolved organic carbon (DOC) concentrations are less than 10 mg C/L in most global inland waters and are generally high in high-latitude basins. Increasing global C inputs, burial, and CO 2 emissions reported in the literature are confirmed by DISC-CARBON. Global river C export to oceans has been stable around 0.9 Pg yr –1 . The long-term changes and spatial patterns of concentrations and fluxes of different C forms in the global river network unfold the combined influence of the lithology, climate, and hydrology of river basins, terrestrial and biological C sources, in-stream C transformations, and human interferences such as damming.
<p><strong>Abstract.</strong> Abstract. Dissolved carbon leaching in and from soils plays an important role in C transport along the terrestrial-aquatic continuum. However, a global overview and analysis of dissolved carbon in soil solutions, covering a wide range of vegetation types and climates, is lacking. We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions, including potential governing factors, with 762 entries from 351 different sites covering a range of climate zones, land cover types and soil classes. Using this database we develop regression models to calculate topsoil concentrations, and concentrations vs. depth in the subsoil at the global scale. For DIC, the lack of a proportional globally distributed cover inhibits analysis on a global scale. For DOC, annual average concentrations range from 1.7 to 88.3 (median&#8201;=&#8201;25.27)&#8201;mg&#8201;C/L for topsoils and from 0.42 to 372.1 (median&#8201;=&#8201;5.50)&#8201;mg&#8201;C/L for subsoils (excluding lab incubations). Highest topsoil values occur in forests of cooler, humid zones. In topsoils, multiple regression showed that precipitation is the most significant factor. Our global topsoil DOC model (R<sup>2</sup>&#8201;=&#8201;0.36) uses precipitation, soil class, climate zone and land cover type as model factors. Our global subsoil model describes DOC concentrations vs. depth for different USDA soil classes (overall R<sup>2</sup>&#8201;=&#8201;0.45). Highest subsoil concentrations are calculated for Histosols.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.