An essential part of the IRMA-project (Image Retrieval in Medical Applications) is the categorization of digitized images into predefined classes using a combination of different independent features. To obtain an automated and content-based categorization, the following features are extracted from the image data: Fourier coefficients of normalized projections are computed to supply a scale-and translation-invariant description. Furthermore, histogram information and Co-occurrence matrices are calculated to supply information about the grey value distribution and textural information. But the key part of the feature extraction is the shape information of the objects represented by an Active Shape Model. The Active Shape Model supports various form variations given by a representative training set; we use one particular Active Shape Model for each image class. These different Active Shape Models are matched on preprocessed image data with a simulated annealing optimization. The different extracted features were chosen with regard to the different characteristics of the image content. They give a comprehensive description of image content using only few different features. Using this combination of different features for categorization results in a robust classification of image data, which is a basic step towards medical archives that allow retrieval results for queries of diagnostic relevance.
Image retrieval in medical applications (IRMA) requires the cooperation of experts in the field of medicine, image analysis, feature analysis and systems engineering. A distributed developing platform was implemented to support the progress of the IRMA-system. As the concept for this system strictly separates the steps for medical image retrieval, its components can be developed separately by work groups in different departments. The development platform provides location and access transparency for its resources. These resources are images and extracted features as well as methods which all are distributed automatically between the work groups. Replications are created to avoid repeated network transfers. All resources are administered in one central database. Computationally expensive feature extraction tasks are distributed also automatically to be processed on concurring workstations of different work groups. The developing platform intensifies and simplifies the cooperation of the interdisciplinary IRMAdevelopment-team by providing fast and automated deliveries of components from software developers to physicians for evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.