BackgroundPrevious controlled studies on the effect of non-pharmaceutical interventions (NPI) - namely the use of facemasks and intensified hand hygiene - in preventing household transmission of influenza have not produced definitive results. We aimed to investigate efficacy, acceptability, and tolerability of NPI in households with influenza index patients.MethodsWe conducted a cluster randomized controlled trial during the pandemic season 2009/10 and the ensuing influenza season 2010/11. We included households with an influenza positive index case in the absence of further respiratory illness within the preceding 14 days. Study arms were wearing a facemask and practicing intensified hand hygiene (MH group), wearing facemasks only (M group) and none of the two (control group). Main outcome measure was laboratory confirmed influenza infection in a household contact. We used daily questionnaires to examine adherence and tolerability of the interventions.ResultsWe recruited 84 households (30 control, 26 M and 28 MH households) with 82, 69 and 67 household contacts, respectively. In 2009/10 all 41 index cases had a influenza A (H1N1) pdm09 infection, in 2010/11 24 had an A (H1N1) pdm09 and 20 had a B infection. The total secondary attack rate was 16% (35/218). In intention-to-treat analysis there was no statistically significant effect of the M and MH interventions on secondary infections. When analysing only households where intervention was implemented within 36 h after symptom onset of the index case, secondary infection in the pooled M and MH groups was significantly lower compared to the control group (adjusted odds ratio 0.16, 95% CI, 0.03-0.92). In a per-protocol analysis odds ratios were significantly reduced among participants of the M group (adjusted odds ratio, 0.30, 95% CI, 0.10-0.94). With the exception of MH index cases in 2010/11 adherence was good for adults and children, contacts and index cases.ConclusionsResults suggest that household transmission of influenza can be reduced by the use of NPI, such as facemasks and intensified hand hygiene, when implemented early and used diligently. Concerns about acceptability and tolerability of the interventions should not be a reason against their recommendation.Trial registrationThe study was registered with ClinicalTrials.gov (Identifier NCT00833885).
The main challenge of bottom-up proteomic sample preparation is to extract proteomes in a manner that enables efficient protein digestion for subsequent mass spectrometric analysis. Today's sample preparation strategies are commonly conceptualized around the removal of detergents, which are essential for extraction but strongly interfere with digestion and LC-MS. These multi-step preparations contribute to a lack of reproducibility as they are prone to losses, biases and contaminations, while being time-consuming and labor-intensive. We report a detergent-free method, named Sample Preparation by Easy Extraction and Digestion (SPEED), which consists of three mandatory steps, acidification, neutralization and digestion. SPEED is a universal method for peptide generation from various sources and is easily applicable even for lysis-resistant sample types as pure trifluoroacetic acid (TFA) is used for highly efficient protein extraction by complete sample dissolution. The protocol is highly reproducible, virtually loss-less, enables very rapid sample processing and is superior to the detergent/chaotropic agent-based methods FASP, ISD-Urea and SP3 for quantitative proteomics. SPEED holds the potential to dramatically simplify and standardize sample preparation while improving the depth of proteome coverage especially for challenging samples.
BackgroundInfluenza viral shedding studies provide fundamental information for preventive strategies and modelling exercises. We conducted a prospective household study to investigate viral shedding in seasonal and pandemic influenza between 2007 and 2011 in Berlin and Munich, Germany.MethodsStudy physicians recruited index patients and their household members. Serial nasal specimens were obtained from all household members over at least eight days and tested quantitatively by qRT-PCR for the influenza virus (sub)type of the index patient. A subset of samples was also tested by viral culture. Symptoms were recorded daily.ResultsWe recruited 122 index patients and 320 household contacts, of which 67 became secondary household cases. Among all 189 influenza cases, 12 were infected with seasonal/prepandemic influenza A(H1N1), 19 with A(H3N2), 60 with influenza B, and 98 with A(H1N1)pdm09. Nine (14%) of 65 non-vaccinated secondary cases were asymptomatic/subclinical (0 (0%) of 21 children, 9 (21%) of 44 adults; p = 0.03). Viral load among patients with influenza-like illness (ILI) peaked on illness days 1, 2 or 3 for all (sub)types and declined steadily until days 7–9. Clinical symptom scores roughly paralleled viral shedding dynamics. On the first day prior to symptom onset 30% (12/40) of specimens were positive. Viral load in 6 asymptomatic/subclinical patients was similar to that in ILI-patients. Duration of infectiousness as measured by viral culture lasted approximately until illness days 4–6. Viral load did not seem to be influenced by antiviral therapy, age or vaccination status.ConclusionAsymptomatic/subclinical infections occur infrequently, but may be associated with substantial amounts of viral shedding. Presymptomatic shedding may arise in one third of cases, and shedding characteristics appear to be independent of (seasonal or pandemic) (sub)type, age, antiviral therapy or vaccination; however the power to find moderate differences was limited.
One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted.
Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus’ zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.