In this paper we provide a wildness criterion for any finite dimensional Hopf algebra with finitely generated cohomology. This generalizes a result of Farnsteiner to not necessarily cocommutative Hopf algebras over ground fields of arbitrary characteristic. Our proof uses the theory of support varieties for modules, one of the crucial ingredients being a tensor product property for some special modules. As an application we prove a conjecture of Cibils stating that small quantum groups of rank at least two are wild.
We use the theory of varieties for modules arising from Hochschild cohomology to give an alternative version of the wildness criterion of Bergh and Solberg [7]: If a finite dimensional self-injective algebra has a module of complexity at least 3 and satisfies some finiteness assumptions on Hochschild cohomology, then the algebra is wild. We show directly how this is related to the analogous theory for Hopf algebras that we developed in [23]. We give applications to many different types of algebras: Hecke algebras, reduced universal enveloping algebras, small half-quantum groups, and Nichols (quantum symmetric) algebras.
In this paper we study injective modules over universal enveloping algebras of finite-dimensional Lie algebras over fields of arbitrary characteristic. Most of our results are dealing with fields of prime characteristic but we also elaborate on some of their analogues for solvable Lie algebras over fields of characteristic zero. It turns out that analogous results in both cases are often quite similar and resemble those familiar from commutative ring theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.