In the present work, pH‐sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blends as well as hydrogels based on poly(N‐isopropylacrylamide) (PNIPAAm), which are sensitive to organic solvent concentration in aqueous solutions, were used in silicon micromachined sensors. A sensitivity of approximately 15 mV/pH was obtained for a pH sensor with a 50 μm thick PVA/PAA hydrogel layer in a pH range above the acid exponent of acrylic acid (pKa=4.7). The output voltage versus pH‐value characteristics and the long‐term signal stability of hydrogel‐based sensors were investigated and the measurement conditions necessary for high signal reproducibility were determined. The influence of the preparation conditions of the hydrogel films on the sensitivity and response time of the chemical and pH sensors is discussed.
The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80,000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials.
The contribution describes a new kind of multi-layer beam with a variable stiffness based on electroactive polymers (EAP). These structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. Dielectric Elastomer foils from Danfoss PolyPower are used to control the beam's stiffness.The basic idea is to change the area moment of inertia of bending beams. These beams are built up as multi-layer stacks of thin metal or PMMA plates. Its internal structure can be changed by the use of the electroactive polymers for controlling the area moment of inertia. So it is possible to strongly change the stiffness of bending beams up to two orders of magnitude. Thereby, the magnitude of varying the stiffness can be scaled by the number of layers and the number and type of electroactive polymer elements used within the bending beam.The mechanisms for controlling the area moment of inertia are described in detail. Modeling of the mechanical structure including the EAP uses a pseudo rigid-body model, a strain energy model as well as a finite element analysis. The theoretical calculations are verified by experiments. The prototype described here consists of two structural layers. First results show the feasibility of the proposed structure for mechanical components with stiffness control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.