A well-justified stratigraphical correlation of continental successions and new palaeogeographic reconstruction of Pangaea reveal new insights into the northern Pangaean climate development influenced by palaeogeography, palaeotopography, glacio-eustatic sealevel changes and ocean currents. The overall Permo-Carboniferous aridization trend was interrupted by five wet phases. These are linked to the Gondwana icecap. The aridization and weakening of wet phases over time were not only caused by the drift of northern Pangaea to the arid climatic belt, but also by the successive closure of the Rheic Ocean, which caused the expansion of arid/semi-arid environments in the Lower/Middle Permian. The end of the Gondwana glaciation rearranged ocean circulation, leading to a cold, coast-parallel ocean current west of northern Pangaea, blocking moisture coming with westerly winds. The maximum of aridity was reached during the Roadian/Wordian. The Trans-Pangaean Mountain Belt was non-existent. Its single diachronous parts never exceeded an average elevation of 2000 m. The maximum elevation shifted during time from east to west. The Hercynian orogen never acted as an orographic east-west barrier, and the Inter-Tropical Convergence Zone was widely displaced, causing four seasons (dry summer/winter, wet spring/autumn) at the equator and a strong monsoon system.
IMPF: 00.66A synthesis of the upper Moscovian sedimentotogical and palaeontological record of terrestrial habitats across the Variscan foreland and adjacent intramontane basins (an area which is referred to here as Variscan Euramerica) suggests a contraction and progressive westward shift of the coal swamps. These changes can be correlated with pulses of tectonic activity (tectonic phases) resulting from the northwards migration of the Variscan Front. This tectonic activity caused disruption to the landscapes and drainage patterns where the coat swamps were growing, which became less suitable to growth of the dominant plants of the swamps, the arborescent lycopsids. They were progressively replaced by vegetation dominated by marattialean ferns, which through a combination of slower growth and larger canopies resulted in less evapo-transpiration. This in turn caused localised reductions in rainfall, which further affected the ability of the lycopsids to dominate the swamp vegetation. These changes were initially localised and where the coat swamps were able to survive the lycopsids and pteridosperms show little change in either species diversity or biogeography, indicating that at this time there was minimal regional-scale climate change taking place. By Asturian times, however, the process had accelerated and the swamps in Variscan Euramerica became progressively replaced by predominantly conifer and cordaite vegetation that favoured much drier substrates. Except in localised pockets in intramontane basins of the Variscan Mountains, the last development of coat swamps in Variscan Euramerica was of early Cantabrian age. Further west, lycopsid-dominated coal swamps persisted for a little longer. The last remnants of the lycopsid-dominated coal swamps in the Illinois Basin disappeared probably by middle-late Cantabrian times, as the cycle of contracting wetlands and regional reductions in rainfall generated its own momentum, and no longer needed the impetus of tectonic instability. This tectonically-driven decline in the Euramerican coal swamps was probably responsible for an annual increase in atmospheric CO2 of c. 0.37 ppm, and may have been implicated in the marked increase in global temperatures near the Moscovian - Kasimovian boundary, and the onset of the Late Pennsylvanian interglacial.Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.