Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.
The natural organic matter (NOM) removal efficiency and regeneration behavior of ion-exchange filters with promoted biological activity (BIEX) was compared to operation where biological activity was suppressed (i.e. abiotic conditions). The impact of BIEX pre-treatment on fouling in subsequent ultrafiltration was also investigated. Biological operation enhanced NOM removal by approximately 50% due to an additional degradation of smaller humic substances, building blocks and low molecular weight acids. Promotion of biological activity significantly increased the time to breakthrough of the filters and, therefore, is expected to lower the regeneration frequency as well as the amount of regenerate of which to dispose. Pre-treatment using BIEX filters resulted in a significant decrease in total and irreversible fouling during subsequent ultrafiltration. The decrease was attributed to the effective removal of medium and low molecular weight NOM fractions. The results indicate that BIEX filtration is a robust, affordable and easy-to-operate pre-treatment approach to minimize fouling in ultrafiltration systems and enhance the quality of the produced permeate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.