Homogeneous transition-metal catalysis is a crucial technology for the sustainable preparation of valuable chemicals. The catalyst concentration is usually kept as low as possible, typically at mM or μM levels, and the effect of high catalyst concentration is hardly exploited because of solubility issues and the inherent unfavorable catalyst/substrate ratio. Herein, a self-assembly strategy is reported which leads to local catalyst concentrations ranging from 0.05 M to 1.1 M, inside well-defined nanospheres, whilst the overall catalyst concentration in solution remains at the conventional mM levels. We disclose that only at this high concentration, the gold(I) chloride is reactive and shows high selectivity in intramolecular CO and CC bond-forming cyclization reactions.
Lowering the overpotential required for water oxidation is of paramount importance for the efficient production of carbon-neutral fuels. This article highlights the intrinsic influence of the water oxidation mechanism used by molecular catalysts on the theoretically achievable minimal overpotential, based on scaling relationships typically used for heterogeneous catalysts. Due to such scaling relationships, catalysts that operate through the water nucleophilic attack mechanism have a fundamental minimal overpotential of about 0.3 V, whereas those that follow the dinuclear radical oxo coupling mechanism should in principle be able to operate with a lower overpotential. Therefore, it is recommended to design catalysts operating through the latter mechanism to achieve very efficient water oxidation systems.
This review describes supramolecular strategies for optimization and integration of components needed for the fundamentals of artificial photosynthesis: light harvesting, charge-separation and catalysis, which are relevant for solar-to-fuel devices.
Review provides a summary of previous research works highlighting 1 st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10−5
m) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m). The preorganization strategy enhances the water oxidation rate by two‐orders of magnitude to 125 s−1, as it facilitates the diffusion‐controlled rate‐limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.