A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kappaNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. The results show that our method is significantly better than the two rule-based methods (p < 0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.
The robust detection of red lesions in digital color fundus photographs is a critical step in the development of automated screening systems for diabetic retinopathy. In this paper, a novel red lesion detection method is presented based on a hybrid approach, combining prior works by Spencer et al. (1996) and Frame et al. (1998) with two important new contributions. The first contribution is a new red lesion candidate detection system based on pixel classification. Using this technique, vasculature and red lesions are separated from the background of the image. After removal of the connected vasculature the remaining objects are considered possible red lesions. Second, an extensive number of new features are added to those proposed by Spencer-Frame. The detected candidate objects are classified using all features and a k-nearest neighbor classifier. An extensive evaluation was performed on a test set composed of images representative of those normally found in a screening set. When determining whether an image contains red lesions the system achieves a sensitivity of 100% at a specificity of 87%. The method is compared with several different automatic systems and is shown to outperform them all. Performance is close to that of a human expert examining the images for the presence of red lesions.
An active shape model segmentation scheme is presented that is steered by optimal local features, contrary to normalized first order derivative profiles, as in the original formulation [Cootes and Taylor, 1995, 1999, and 2001]. A nonlinear kNN-classifier is used, instead of the linear Mahalanobis distance, to find optimal displacements for landmarks. For each of the landmarks that describe the shape, at each resolution level taken into account during the segmentation optimization procedure, a distinct set of optimal features is determined. The selection of features is automatic, using the training images and sequential feature forward and backward selection. The new approach is tested on synthetic data and in four medical segmentation tasks: segmenting the right and left lung fields in a database of 230 chest radiographs, and segmenting the cerebellum and corpus callosum in a database of 90 slices from MRI brain images. In all cases, the new method produces significantly better results in terms of an overlap error measure (p < 0.001 using a paired T-test) than the original active shape model scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.