In this work, we model the effects of excimer laser bandwidth on optical proximity effects in high-NA ArF dry and immersion lithography. We quantify the errors introduced by using common approximation methods for the laser spectrum, such as the modified Lorentzian and Gaussian forms. Although these approximations are simple to use, and their symmetry properties can lead to reduced simulation run-times, they typically induce significant CD error when compared to the use of measured spectral profiles, which are obtained from high-resolution spectrophotometry. In this paper we establish some accuracy benchmarks and demonstrate the need for inclusion of information about the spectral profile-for the laser type of interest-in order to achieve sub-nanometer image calculation accuracy required for optical proximity correction. We further assess the speed-accuracy tradeoffs in terms of data truncation and sampling, and propose some practical limits for sampling the illumination spectrum.Additionally, in this work, we propose a new physically-based spectrum approximation method, which significantly reduces computation time at a cost of less than 0.25nm residual image-CD error from the fully-sampled image calculation. In addition to aerial image, we compare 45nm-node calibrated resist models and latent image results for 0.92NA dry and 1.2NA immersion processes using measured illumination profiles and lens aberrations. Finally, we consider the laser bandwidth sensitivity of 2D lineend patterns and typical post-OPC designs for a logic gate-process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.