The clouding of sodium dodecyl sulfate (SDS) in strongly acidic solutions has seen analytical use, but its mechanism has generally been misinterpreted. In the present work it was found that as SDS slowly hydrolyzes to form dodecanol, the solution passes through a series of compositions at which the aggregation of surfactant is promoted by nucleation onto traces of insoluble dodecanol. This occurred at concentrations well below the critical micelle concentration of SDS and resulted in mixed aggregates that grew to macroscopic size, giving the solution a cloudy appearance. The increasing dodecanol content eventually caused coalescence into a coacervate phase which evolved into a solid layer of dehydrated dodecanol. The process, which continued over an extended period, depended on the temperature and the concentration and type of acid used. The early stages of SDS aggregation were monitored through the I 1 /I 3 ratio of pyrene fluorescence, which confirmed the existence of micelle-like aggregates at low surfactant concentration. The mixed SDS/dodecanol systems formed in acid hydrolysis were mimicked in neutral solution by combining the appropriate amounts of SDS, dodecanol, and NaCl. Clouding and the formation of a coacervate phase generally proceeded in a similar manner in these solutions.
This report describes the hydrogen content measurements of yttrium samples as irradiated at Advanced Test Reactor as part of the Microreactor Program. Irradiated samples were prepared at the facilities of Analytical Research Laboratory (ARL) of Materials and Fuels Complex (MFC). Hydrogen content measurements were performed on reduced size specimens using an inert gas fusion analyzer. From a single specimen, replicate samples were prepared and tested. Uncertainty analyses were conducted using two approaches to determine the hydrogen content variations in the samples. The hydrogen content of irradiated specimens was both lower and higher than the expected values, indicating stoichiometry variations. Hydrogen was detected in all samples, including the cracked capsule's specimens. Results also suggested the potential presence of hydrogen redistribution between samples inside the capsules.
In this paper, the development of a fission-gas collecting and physical-analysis-enabling instrument was proposed for small-volume determination. Analysis specifications require a design capable of accurately and repeatably determining volumes in the range of 0.07–2.5 mL. This system relies on a series of gas expansions originating from a cylinder with known internal volume. The combined gas law is used to derive the unknown volumes from these expansions. Initial system designs included one of two known volumes, 11.85 ± 0.34 mL and 5.807 ± 0.078 mL, with a manifold volume of 32 mL. Results obtained from modeling this system’s operation showed that 0.07 mL can be determined with a relative expanded uncertainty greater than 300% (k = 2) for a single replicate, which was unacceptable for the proposed experimental design. Initial modeling showed that the volume connecting the known volume and rodlet, i.e., the manifold volume, and the sensitivity of the pressure sensor were key contributors to the expanded uncertainty of the measured rodlet volume. The system’s design limited the available options for pressure sensors, so emphasis was placed on the design of the manifold volume. The final system design reduced the manifold volume to 17 mL. These changes in design, combined with replicate analysis, were able to reduce the relative expanded uncertainty by ±12% (k = 2) for the 0.07 mL volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.