The role of circulating, non-esterified, long-chain fatty acids (NEFA) as a source of energy for the whole animal and skeletal muscle was investigated in fed non-pregnant sheep at rest and during exercise. Infusion of tracer quantities of [1-14C]oleic or [l-14C]stearic acid was combined with the use of arteriovenous difference studies on fed sheep at rest or during a 2 h period of exercise on a belt treadmill moving at 4· 5 km h -I. At rest all parameters of NEFA metabolism indicated a minimal role for oxidation. Thus the concentration in plasma (0'07 ± 0·01 mmol I-I), entry rate (0'08 ± 0·02 mmol h-I kg-I body wt), contribution to whole animal oxidation (1'2 ± 0'3%) and utilization of NEFA by skeletal muscle (0'046 ± 0·008 mmol h-I kg-I muscle) were all low. Exercise prompted a shift to lipolysis and accordingly the above parameters increased markedly some 13-24-fold. The circulating concentration of ketone bodies showed only a small increase during exercise and consequently the role of ketone bodies as an energy source during exercise was minimal. Glucose utilization by skeletal muscle was considerable in animals at rest and it represented the most significant potential fuel of skeletal muscle. Exercise resulted in a sustained increase of 3-4-fold in the utilization of glucose by skeletal muscle. Thus the traditional view that NEF A and not glucose is a predominant fuel of skeletal muscle of fed sheep should be appraised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.