Composite analyses of mixed layer temperature (MLT) budget terms from near‐surface meteorological and oceanic observations in the central Bay of Bengal are utilized to evaluate the modulation of air‐sea interactions and MLT processes in response to the summer monsoon intraseasonal oscillation (MISO). For this purpose, we use moored buoy data at 15°N, 12°N, and 8°N along 90°E together with TropFlux meteorological parameters and the Ocean Surface Current Analyses Real‐time (OSCAR) current product. Our analysis shows a strong cooling tendency in MLT with maximum amplitude in the central and northern BoB during the northward propagation of enhanced convective activity associated with the active phase of the MISO; conversely, warming occurs during the suppressed phase of the MISO. The surface mixed layer is generally heated during convectively inactive phases of the MISO primarily due to increased net surface heat flux into the ocean. During convectively active MISO phases, the surface mixed layer is cooled by the combined influence of net surface heat loss to the atmosphere and entrainment cooling at the base of mixed layer. The variability of net surface heat flux is primarily due to modulation of latent heat flux and shortwave radiation. Shortwave is mostly controlled by an enhancement or reduction of cloudiness during the active and inactive MISO phases and latent heat flux is mostly controlled by variations in air‐sea humidity difference.
Recent observations show that atmospheric cold pool (ACP) events are plentiful in the Bay of Bengal (BoB) during summer (May–September) and fall (October–November) and that these events can significantly modify local air‐sea interaction processes on sub‐daily time scales. In this study, we examine whether the magnitude of sea surface temperature (SST) drop associated with ACP events shows any diurnal variability during summer and fall. For this purpose, we use moored buoy data with a 10‐min temporal resolution at 8°, 12°, and 15°N along 90°E and a one‐dimensional mixed layer (ML) model. The analysis shows a reduction in SST (ΔSST) due to ACPs in the BoB during summer and fall, with a maximum magnitude of ΔSST during the afternoon (1200–1600 LST). However, the maximum magnitude of ΔSST during the afternoon is a factor of two higher during fall (∼−0.14°C) than summer (∼−0.07°C). Analysis based on observations and ACP sensitivity experiments indicates that the shallow daytime thermocline and associated thin surface ML is the primary factor regulating the day to night difference in ΔSST associated with ACPs. The presence of this shallow daytime thermocline and thin ML amplifies the effects on SST of net surface heat loss and entrainment of cold sub‐surface water associated with enhanced ACP wind speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.