Because of conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.
The work content of non-equilibrium systems in relation to a heat bath is often analysed in terms of expectation values of an underlying random work variable. However, when optimizing the expectation value of the extracted work, the resulting extraction process is subject to intrinsic fluctuations, uniquely determined by the Hamiltonian and the initial distribution of the system. These fluctuations can be of the same order as the expected work content per se, in which case the extracted energy is unpredictable, thus intuitively more heat-like than worklike. This raises the question of the 'truly' work-like energy that can be extracted. Here we consider an alternative that corresponds to an essentially fluctuation-free extraction. We show that this quantity can be expressed in terms of a one-shot relative entropy measure introduced in information theory. This suggests that the relations between information theory and statistical mechanics, as illustrated by concepts like Maxwell's demon, Szilard engines and Landauer's principle, extends to the single-shot regime.
The heat generated by computations is not only an obstacle to circuit miniaturization but also a fundamental aspect of the relationship between information theory and thermodynamics. In principle, reversible operations may be performed at no energy cost; given that irreversible computations can always be decomposed into reversible operations followed by the erasure of data, the problem of calculating their energy cost is reduced to the study of erasure. Landauer's principle states that the erasure of data stored in a system has an inherent work cost and therefore dissipates heat. However, this consideration assumes that the information about the system to be erased is classical, and does not extend to the general case where an observer may have quantum information about the system to be erased, for instance by means of a quantum memory entangled with the system. Here we show that the standard formulation and implications of Landauer's principle are no longer valid in the presence of quantum information. Our main result is that the work cost of erasure is determined by the entropy of the system, conditioned on the quantum information an observer has about it. In other words, the more an observer knows about the system, the less it costs to erase it. This result gives a direct thermodynamic significance to conditional entropies, originally introduced in information theory. Furthermore, it provides new bounds on the heat generation of computations: because conditional entropies can become negative in the quantum case, an observer who is strongly correlated with a system may gain work while erasing it, thereby cooling the environment.
Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.