Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational at room temperature. As more and more different ME sensor concepts are accessible to medical applications, the need for comparative quality metrics significantly arises. For a medical application, both the specification of the sensor itself and the specification of the readout scheme must be considered. Therefore, from a medical user’s perspective, a system consideration is better suited to specific quantitative measures that consider the sensor readout scheme as well. The corresponding sensor system evaluation should be performed in reproducible measurement conditions (e.g., magnetically, electrically and acoustically shielded environment). Within this contribution, an ME sensor system evaluation scheme will be described and discussed. The quantitative measures will be determined exemplarily for two ME sensors: a resonant ME sensor and an electrically modulated ME sensor. In addition, an application-related signal evaluation scheme will be introduced and exemplified for cardiovascular application. The utilized prototype signal is based on a magnetocardiogram (MCG), which was recorded with a superconducting quantum-interference device. As a potential figure of merit for a quantitative signal assessment, an application specific capacity (ASC) is introduced. In conclusion, this contribution highlights metrics for the quantitative characterization of ME sensor systems and their resulting output signals in biomagnetism. Finally, different ASC values and signal-to-noise ratios (SNRs) could be clearly presented for the resonant ME sensor (SNR: −90 dB, ASC: 9.8×10−7 dB Hz) and also the electrically modulated ME sensor (SNR: −11 dB, ASC: 23 dB Hz), showing that the electrically modulated ME sensor is better suited for a possible MCG application under ideal conditions. The presented approach is transferable to other magnetic sensors and applications.
Some magnetoelectric sensors require predefined external magnetic fields to satisfy optimal operation depending on their resonance frequency. While coils commonly generate this external magnetic field, a microelectromechanical systems (MEMS) resonator integrated with permanent magnets could be a possible replacement. In this proof-of-concept study, the interaction of a MEMS resonator and the ME sensor is investigated and compared with the standard approach to achieve the best possible sensor operation in terms of sensitivity. The achievable sensor sensitivity was evaluated experimentally by generating the magnetic excitation signal by a coil or a small-sized MEMS resonator. Moreover, the possibility of using both approaches simultaneously was also analysed. The MEMS resonator operated with 20Vppat 1.377 kHz has achieved a sensor sensitivity of 221.21mV/T. This sensitivity is comparable with the standard approach, where only a coil for sensor excitation is used. The enhanced sensitivity of 277.0mV/T could be identified by generating the excitation signal simultaneously by a coil and the MEMS resonator in parallel. In conclusion, these MEMS resonator methods can potentially increase the sensitivity of the ME sensor even further. The unequal excitation frequency of the MEMS resonator and the resonance frequency of the ME sensor currently limit the performance. Furthermore, the MEMS resonator as a coil replacement also enables the complete sensor system to be scaled down. Therefore, optimizations to match both frequencies even better are under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.