For patients with indolent non-Hodgkin lymphoma who fail initial anti-CD20–based immunochemotherapy or develop relapsed or refractory disease, there remains a significant unmet clinical need for new therapeutic approaches to improve outcomes and quality of life. 177Lu-lilotomab satetraxetan is a next-generation single-dose CD37-directed radioimmunotherapy (RIT) which was investigated in a phase 1/2a study in 74 patients with relapsed/refractory indolent non-Hodgkin B-cell lymphoma, including 57 patients with follicular lymphoma (FL). To improve targeting of 177Lu-lilotomab satetraxetan to tumor tissue and decrease hematologic toxicity, its administration was preceded by the anti-CD20 monoclonal antibody rituximab and the “cold” anti-CD37 antibody lilotomab. The most common adverse events (AEs) were reversible grade 3/4 neutropenia (31.6%) and thrombocytopenia (26.3%) with neutrophil and platelet count nadirs 5 to 7 weeks after RIT. The most frequent nonhematologic AE was grade 1/2 nausea (15.8%). With a single administration, the overall response rate was 61% (65% in patients with FL), including 30% complete responses. For FL with ≥2 prior therapies (n = 37), the overall response rate was 70%, including 32% complete responses. For patients with rituximab-refractory FL ≥2 prior therapies (n = 21), the overall response rate was 67%, and the complete response rate was 24%. The overall median duration of response was 13.6 months (32.0 months for patients with a complete response). 177Lu-lilotomab satetraxetan may provide a valuable alternative treatment approach in relapsed/refractory non-Hodgkin lymphoma, particularly in patients with comorbidities unsuitable for more intensive approaches. This trial was registered at www.clinicaltrials.gov as #NCT01796171.
177 Lu-lilotomab satetraxetan is a novel antibody radionuclide conjugate currently tested in a phase 1/2a first-in-human dosage escalation trial for patients with relapsed CD371 indolent non-Hodgkin lymphoma. The aim of this work was to develop dosimetric methods and calculate tumor-absorbed radiation doses for patients treated with 177 Lu-lilotomab satetraxetan. Methods: Patients were treated at escalating injected activities (10, 15 and 20 MBq/kg) of 177 Lulilotomab satetraxetan and with different predosing, with or without 40 mg of unlabeled lilotomab. Eight patients were included for the tumor dosimetry study. Tumor radioactivity concentrations were calculated from SPECT acquisitions at multiple time points, and tumor masses were delineated from corresponding CT scans. Tumor-absorbed doses were then calculated using the OLINDA sphere model. To perform voxel dosimetry, the SPECT/CT data and an inhouse-developed MATLAB program were combined to investigate the dose rate homogeneity. Results: Twenty-six tumors in 8 patients were ascribed a mean tumor-absorbed dose. Absorbed doses ranged from 75 to 794 cGy, with a median of 264 cGy across different dosage levels and different predosing. A significant correlation between the dosage level and tumor-absorbed dose was found. Twenty-one tumors were included for voxel dosimetry and parameters describing dose-volume coverage calculated. The investigation of intratumor voxel doses indicates that mean tumor dose is correlated to these parameters. Conclusion: Tumor-absorbed doses for patients treated with 177 Lu-lilotomab satetraxetan are comparable to doses reported for other radioimmunotherapy compounds. Although the intertumor variability was considerable, a correlation between tumor dose and patient dosage level was found. Our results indicate that mean dose may be used as the sole dosimetric parameter on the lesion level.
Purpose177Lu-lilotomab satetraxetan is a novel anti-CD37 antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma (NHL). Four arms with different combinations of pre-dosing and pre-treatment have been investigated in a first-in-human phase 1/2a study for relapsed CD37+ indolent NHL. The aim of this work was to determine the tumor and normal tissue absorbed doses for all four arms, and investigate possible variations in the ratios of tumor to organs-at-risk absorbed doses.MethodsTwo of the phase 1 arms included cold lilotomab pre-dosing (arm 1 and 4; 40 mg fixed and 100 mg/m2 BSA dosage, respectively) and two did not (arms 2 and 3). All patients were pre-treated with different regimens of rituximab. The patients received either 10, 15, or 20 MBq 177Lu-lilotomab satetraxetan per kg body weight. Nineteen patients were included for dosimetry, and a total of 47 lesions were included. The absorbed doses were calculated from multiple SPECT/CT-images and normalized by administered activity for each patient. Two-sided Student’s t tests were used for all statistical analyses.ResultsOrgans with distinct uptake of 177Lu-lilotomab satetraxetan, in addition to tumors, were red marrow (RM), liver, spleen, and kidneys. The mean RM absorbed doses were 0.94, 1.55, 1.44, and 0.89 mGy/MBq for arms 1–4, respectively. For the patients not pre-dosed with lilotomab (arms 2 and 3 combined) the mean RM absorbed dose was 1.48 mGy/MBq, which was significantly higher than for both arm 1 (p = 0.04) and arm 4 (p = 0.02). Of the other organs, the highest uptake was found in the spleen, and there was a significantly lower spleen absorbed dose for arm-4 patients than for the patient group without lilotomab pre-dosing (1.13 vs. 3.20 mGy/MBq; p < 0.01).Mean tumor absorbed doses were 2.15, 2.31, 1.33, and 2.67 mGy/MBq for arms 1–4, respectively. After averaging the tumor absorbed dose for each patient, the patient mean tumor absorbed dose to RM absorbed dose ratios were obtained, given mean values of 1.07 for the patient group not pre-dosed with lilotomab, of 2.16 for arm 1, and of 4.62 for arm 4. The ratios were significantly higher in both arms 1 and 4 compared to the group without pre-dosing (p = 0.05 and p = 0.02). No statistically significant difference between arms 1 and 4 was found.ConclusionsRM is the primary dose-limiting organ for 177Lu-lilotomab satetraxetan treatment, and pre-dosing with lilotomab has a mitigating effect on RM absorbed dose. Increasing the amount of lilotomab from 40 mg to 100 mg/m2 was found to slightly decrease the RM absorbed dose and increase the ratio of tumor to RM absorbed dose. Still, both pre-dosing amounts resulted in significantly higher tumor to RM absorbed dose ratios. The findings encourage continued use of pre-dosing with lilotomab.Electronic supplementary materialThe online version of this article (10.1007/s00259-018-3964-9) contains supplementary material, which is available to authorized users.
Red marrow (RM) is often the primary organ at risk in radioimmunotherapy; irradiation of marrow may induce short-and long-term hematologic toxicity. 177 Lu-lilotomab satetraxetan is a novel anti-CD37 antibody-radionuclide conjugate currently in phase 1/2a. Two predosing regimens have been investigated, one with 40 mg of unlabeled lilotomab antibody (arm 1) and one without (arm 2). The aim of this work was to compare RM-absorbed doses for the two arms and to correlate absorbed doses with hematologic toxicity. Methods: Eight patients with relapsed CD371 indolent B-cell non-Hodgkin lymphoma were included for RM dosimetry. Hybrid SPECT and CT images were used to estimate the activity concentration in the RM of L2-L4. Pharmacokinetic parameters were calculated after measurement of the 177 Lu-lilotomab satetraxetan concentration in blood samples. Adverse events were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. Results: The mean absorbed doses to RM were 0.9 mGy/MBq for arm 1 (lilotomab1) and 1.5 mGy/MBq for arm 2 (lilotomab2). There was a statistically significant difference between arms 1 and 2 (Student t test, P 5 0.02). Total RM-absorbed doses ranged from 67 to 127 cGy in arm 1 and from 158 to 207 cGy in arm 2. For blood, the area under the curve was higher with lilotomab predosing than without (P 5 0.001), whereas the volume of distribution and the clearance of 177 Lu-lilotomab satetraxetan was significantly lower (P 5 0.01 and P 5 0.03, respectively). Patients with grade 3/4 thrombocytopenia had received significantly higher radiation doses to RM than patients with grade 1/2 thrombocytopenia (P 5 0.02). A surrogate, non-imaging-based, method underestimated the RM dose and did not show any correlation with toxicity. Conclusion: Predosing with lilotomab reduces the RM-absorbed dose for 177 Lu-lilotomab satetraxetan patients. The decrease in RM dose could be explained by the lower volume of distribution. Hematologic toxicity was more severe for patients receiving higher absorbed radiation doses, indicating that adverse events possibly can be predicted by the calculation of absorbed dose to RM from SPECT/CT images.
A search in PubMed revealed that 72 radionuclides have been considered for molecular or functional targeted radionuclide therapy. As radionuclide therapies increase in number and variations, it is important to understand the role of the radionuclide and the various characteristics that can render it either useful or useless. This review focuses on the physical characteristics of radionuclides that are relevant for radionuclide therapy, such as linear energy transfer, relative biological effectiveness, range, half-life, imaging properties, and radiation protection considerations. All these properties vary considerably between radionuclides and can be optimised for specific targets. Properties that are advantageous for some applications can sometimes be drawbacks for others; for instance, radionuclides that enable easy imaging can introduce more radiation protection concerns than others. Similarly, a long radiation range is beneficial in targets with heterogeneous uptake, but it also increases the radiation dose to tissues surrounding the target, and, hence, a shorter range is likely more beneficial with homogeneous uptake. While one cannot select a collection of characteristics as each radionuclide comes with an unchangeable set, all the 72 radionuclides investigated for therapy—and many more that have not yet been investigated—provide numerous sets to choose between.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.