Translational tracer diffusion of spherical macromolecules in crowded suspensions of rodlike colloids is investigated. Experiments are done using several kinds of spherical tracers in fd-virus suspensions. A wide range of size ratios L/2a of the length L of the rods and the diameter 2a of the tracer sphere is covered by combining several experimental methods: fluorescence correlation spectroscopy for small tracer spheres, dynamic light scattering for intermediate sized spheres, and video microscopy for large spheres. Fluorescence correlation spectroscopy is shown to measure long-time diffusion only for relatively small tracer spheres. Scaling of diffusion coefficients with a/ , predicted for static networks, is not found for our dynamical network of rods ͑with the mesh size of the network͒. Self-diffusion of tracer spheres in the dynamical network of freely suspended rods is thus fundamentally different as compared to cross-linked networks. A theory is developed for the rod-concentration dependence of the translational diffusion coefficient at low rod concentrations for freely suspended rods. The proposed theory is based on a variational solution of the appropriate Smoluchowski equation without hydrodynamic interactions. The theory can, in principle, be further developed to describe diffusion through dynamical networks at higher rod concentrations with the inclusion of hydrodynamic interactions. Quantitative agreement with the experiments is found for large tracer spheres, and qualitative agreement for smaller spheres. This is probably due to the increasing importance of hydrodynamic interactions as compared to direct interactions as the size of the tracer sphere decreases.
We studied the thermal diffusion behavior of octadecyl coated silica particles (R h = 27 nm) in toluene between 15.0 • C and 50.0 • C in a volume fraction range of 1% to 30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S T of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
We address the fundamental question: how are pair correlations and structure factors of hard-sphere fluids affected by confinement between hard planar walls at close distance? For this purpose, we combine x-ray scattering from colloid-filled nanofluidic channel arrays and first-principles inhomogeneous liquidstate theory within the anisotropic Percus-Yevick approximation. The experimental and theoretical data are in remarkable agreement at the pair-correlation level, providing the first quantitative experimental verification of the theoretically predicted confinement-induced anisotropy of the pair-correlation functions for the fluid. The description of confined fluids at this level provides, in the general case, important insights into the mechanisms of particle-particle interactions in dense fluids under confinement.
Block copolymer micelles in the size range between 10 and 100 nm are investigated as model systems for soft spheres. The zero shear viscosity 0 and complex modulus G* of micellar solutions are studied via dynamic mechanical spectroscopy and shear viscosity measurements over a wide range of concentrations. Depending on their structure, block copolymer micelles exhibit the characteristic rheological behavior of hard spheres, soft spheres, or polymers. With increasing concentration, hard-sphere and most soft-sphere samples exhibit a sharp liquid-solid transition as apparent by a divergence of zero shear viscosity 0 and the development of a frequency-independent elastic modulus. The transition occurs at a certain volume fraction which can be related to the softness of the particles. In the solid regime the elastic modulus GЈ exhibits a characteristic concentration dependence which is related to the spatial variation of the soft sphere repulsive potential. We observe a GЈϰZ 1.48 r Ϫ2.46 relation between modulus, aggregation number Z and intermicellar distance r which is close to the theoretical prediction GЈϳZ 3/2 r Ϫ2 of Witten and Pincus derived for polymerically stabilized colloidal particles. © 1997 American Institute of Physics. ͓S0021-9606͑97͒50825-7͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.