SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.
Despite the characterization of some Burkholderia cepacia complex exopolysaccharides (EPSs), little is known about the role of EPSs in the pathogenicity of B. cepacia complex organisms. We describe 2 Burkholderia cenocepacia (genomovar III) isolates obtained from a patient with cystic fibrosis (CF): the nonmucoid isolate C8963 and the mucoid isolate C9343. Both isolates had identical random amplified polymorphic DNA patterns. C9343 produced a capsule composed of the EPSs PS-I and PS-II, as well as alpha -1,6-glucan. These isolates exhibited several phenotypic differences: C8963 synthesized octanoyl-homoserine lactone and produced biofilms, but C9343 did not; in a mouse model of pulmonary infection, C8963 was cleared more rapidly than was C9343; and C9343 interacted poorly with macrophages and neutrophils, compared with C8963, suggesting that the C9343 capsule interfered with cell-surface interactions. Overproduction of EPS by C9343 resulted in a mucoid appearance and interfered with cell-surface interactions and clearance in an animal model. This mucoid colonial appearance could enhance the persistence and virulence of this important CF-related pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.