The concentrations of 16 US-EPA criteria polycyclic aromatic hydrocarbons (PAHs) were monitored during different seasons at six different cities/ locations in the northern part of Belgium. Pressurized liquid extraction was used for the fast recovery of PAHs from quartz fibre filters (QFFs) and polyurethane foams (PUFs) in less than 30 minutes with minimum solvent consumption prior to their analysis with high performance liquid chromatography. The concentrations of PAHs varied significantly at the studied sites and showed relation to different anthropogenic activities, such as vehicular emission (diesel/gasoline), incinerator, petroleum/oil burning, coke production, and wood/coal combustion. The annual average PAH concentration ranged from 17 ng/m 3 (at a rural site) to 114 ng/m 3 (near a petroleum harbour and industry). Most of the human carcinogenic PAHs were found to be associated with suspended particulate matter, which 2 forms around ~55% of the total PAH levels in aerosols. Relatively higher concentrations of PAHs were detected in aerosol samples during winter compared with other seasons, whereas no clear seasonal trend was observed for the vapour phase PAHs. This fraction is likely to be more local in origin; hence, it can be used as a site-specific characteristic. The site-specific concentrations of individual PAHs were also used in diagnostic ratio evaluations and in principal component analysis to find their relation with various anthropogenic activities. These results show that the vehicular emission is a major source of PAHs in Flanders, although other anthropogenic sources, as above, have also an impact on the total PAH levels.
A versatile Monte Carlo program for quantitative particle analysis in electron probe X-ray microanalysis is presented. The program includes routines for simulating electron-solid interactions in microparticles lying on a flat surface and calculating the generated X-ray signal. Simulation of the whole X-ray spectrum as well as phi(z) curves is possible. The most important facility of the program is the reverse Monte Carlo quantification of the chemical composition of microparticles, including low-Z elements, such as C, N, O, and F. This quantification method is based on the combination of a single scattering Monte Carlo simulation and a robust successive approximation. An iteration procedure is employed; in each iteration step, the Monte Carlo simulation program calculates characteristic X-ray intensities, and a new set of concentration values for chemical elements in the particle is determined. When the simulated X-ray intensities converge to the measured ones, the input values of elemental concentrations used for the simulation are determined as chemical compositions of the particle. This quantification procedure was evaluated by investigating various types of standard particles, and good accuracy of the methodology was demonstrated. A methodology for heterogeneity assessment of single particles is also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.