AMPK phosphorylates and activates heart PFK-2 in vitro and in intact cells. AMPK-mediated PFK-2 activation is likely to be involved in the stimulation of heart glycolysis during ischaemia.
To understand the insulin-induced activation of 6-phosphofructo-2-kinase (PFK-2) of the bifunctional enzyme PFK-2/fructose-2,6-bisphosphatase in heart, the effect of phosphorylation by protein kinases of the insulin signaling pathways on PFK-2 activity was studied. Purified PFK-2/fructose-2,6-bisphosphatase from bovine heart is a mixture of two isoforms (M r 58,000 and 54,000 on SDS-polyacrylamide gels). The M r 54,000 protein is an alternatively spliced form, lacking phosphorylation sites for protein kinases. Recombinant enzymes corresponding to the M r 58,000 (BH1) and M r 54,000 (BH3) forms were expressed and used as substrates for phosphorylation. The recombinant BH1 isoform was phosphorylated by p70 ribosomal S6 kinase (p70 s6k ), mitogenactivated protein kinase-activated protein kinase-1, and protein kinase B (PKB), whereas the recombinant BH3 isoform was a poor substrate for these protein kinases. Treatment with all protein kinases activated PFK-2 in the recombinant BH1 preparation. Phosphorylation of the recombinant BH1 isoform correlated with PFK-2 activation and was reversed by treatment with protein phosphatase 2A. All the protein kinases phosphorylated Ser-466 and Ser-483 in the BH1 isoform, but to different extents: p70 s6k preferentially phosphorylated Ser-466, whereas mitogen-activated protein kinase-activated protein kinase-1 and PKB phosphorylated Ser-466 and Ser-483 to a similar extent. We propose that PKB is part of the insulin signaling cascade for PFK-2 activation in heart.
Previous studies have shown that (i) the insulin-induced activation of heart 6-phosphofructo-2-kinase (PFK-2) is wortmannin-sensitive, but is insensitive to rapamycin, suggesting the involvement of phosphatidylinositol 3-kinase; and (ii) protein kinase B (PKB) activates PFK-2 in vitro by phosphorylating Ser-466 and Ser-483. In this work, we have studied the effects of phosphorylation of these residues on PFK-2 activity by replacing each or both residues with glutamate. Mutation of Ser-466 increased the V max of PFK-2, whereas mutation of Ser-483 decreased citrate inhibition. Mutation of both residues was required to decrease the K m for fructose 6-phosphate. We also studied the insulin-induced activation of heart PFK-2 in transfection experiments performed in human embryonic kidney 293 cells. Insulin activated transfected PFK-2 by phosphorylating Ser-466 and Ser-483. Kinase-dead (KD) PKB and KD 3-phosphoinositide-dependent kinase-1 (PDK-1) cotransfectants acted as dominant negatives because both prevented the insulin-induced activation of PKB as well as the inactivation of glycogen-synthase kinase-3, an established substrate of PKB. However, the insulin-induced activation of PFK-2 was prevented only by KD PDK-1, but not by KD PKB. These results indicate that the insulin-induced activation of heart PFK-2 is mediated by a PDK-1-activated protein kinase other than PKB.
In normoxic conditions, myocardial glucose utilization is inhibited when alternative oxidizable substrates are available. In this work we show that this inhibition is relieved in the presence of cAMP, and we studied the mechanism of this effect. Working rat hearts were perfused with 5.5 mM glucose alone (controls) or together with 5 mM lactate, 5 mM beta-hydroxybutyrate, or 1 mM palmitate. The effects of 0.1 mM chlorophenylthio-cAMP (CPT-cAMP), a cAMP analogue, were studied in each group. Glucose uptake, flux through 6-phosphofructo-1-kinase, and pyruvate dehydrogenase activity were inhibited in hearts perfused with alternative substrates, and addition of CPT-cAMP completely relieved the inhibition. The mechanism by which CPT-cAMP induced a preferential utilization of glucose was related to an increased glucose uptake and glycolysis, and to an activation of phosphorylase, pyruvate dehydrogenase, and 6-phosphofructo-2-kinase, the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, the well-known stimulator of 6-phosphofructo-1-kinase. In vitro phosphorylation of 6-phosphofructo-2-kinase by cAMP-dependent protein kinase increased the Vmax of the enzyme and decreased its sensitivity to the inhibitor citrate. Therefore, in hearts perfused with various oxidizable substrates, cAMP induces a preferential utilization of glucose by a concerted stimulation of glucose transport, glycolysis, glycogen breakdown, and glucose oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.