The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m 3 ha (1 (250 m 3 ha (1 mean), and basal area from 4.1 to 42.9 m 2 ha (1 (27.1 m 2 ha (1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.
Above-ground forest biomass is a significant variable in the terrestrial carbon budget, but is still estimated with relatively large uncertainty. Remote sensing methods can improve the characterization of the spatial distribution and estimation accuracy of biomass; in this respect, it is important to examine the potential offered by new sensors. To assess the contribution of the TanDEM-X mission, eighteen interferometric Synthetic Aperture Radar (SAR) image pairs acquired over the hemi-boreal test site of Remningstorp in Sweden were investigated. Three models were used for interpretation of TanDEM-X signatures and above-ground biomass retrieval: Interferometric Water Cloud Model (IWCM), Random Volume over Ground (RVoG) model, and a simple model based on penetration depth (PD). All use an allometric expression to relate above-ground biomass to forest height measured by TanDEM-X. The retrieval was assessed on 201 forest stands with a minimum size of 1 ha, and ranging from 6 to 267 Mg/ha (mean biomass of 105 Mg/ha) equally divided into a model training dataset and a validation test dataset. Biomass retrieved using the IWCM resulted in a Root Mean Square Error (RMSE) between 17% OPEN ACCESS Remote Sens. 2013, 5 5575 and 33%, depending on acquisition date and image acquisition geometry (angle of incidence, interferometric baseline, and orbit type). The RMSE in the case of the RVoG and the PD models were slightly higher. A multitemporal estimate of the above-ground biomass using all eighteen acquisitions resulted in an RMSE of 16% with R 2 = 0.93. These results prove the capability of TanDEM-X interferometric data to estimate forest aboveground biomass in the boreal zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.