Medication dosing errors are frequent in neonatal wards. In an Iranian neonatal ward, a 7.5 months study was designed in three periods to compare the effect of Computerized Physician Order Entry (CPOE) without and with decision support functionalities in reducing non-intercepted medication dosing errors in antibiotics and anticonvulsants. Before intervention (Period 1), error rate was 53%, which did not significantly change after the implementation of CPOE without decision support (Period 2). However, errors were significantly reduced to 34% after that the decision support was added to the CPOE (Period 3; P < 0.001). Dose errors were more often intercepted than frequency errors. Over-dose was the most frequent type of medication errors and curtailed-interval was the least. Transcription errors did not reduce after the CPOE implementation. Physicians ignored alerts when they could not understand why they appeared. A suggestion is to add explanations about these reasons to increase physicians' compliance with the system's recommendations.
Introduction An increasing global need for pharmacovigilance training cannot be met with classroom courses alone. Several e-learning modules have been developed by Uppsala Monitoring Centre (UMC). With distance learners and technological challenges such as poor internet bandwidth to be considered, UMC opted for the microlearning approach based on small learning units connected to specific learning objectives. The aim of this study was to evaluate how this e-learning course was received. Methods The course was evaluated through usage data and the results of two user surveys, one for modules 1-4, signal detection and causality assessment, and the other for module 5, statistical reasoning and algorithms in pharmacovigilance. The evaluation model used was based on the Unified Theory of Acceptance and Use of Technology (UTAUT). A questionnaire was developed, divided into demographic profile, performance expectancy, effort expectancy, educational compatibility and behavioural intention. The two surveys were disseminated to 2067 learners for modules 1-4 and 1685 learners for module 5. Results Learners from 137 countries participated, predominantly from industry (36.6%), national pharmacovigilance centres (22.6%) and academia (16.3%). The overall satisfaction level was very high for all modules, with over 90% of the learners rating it as either 'excellent' or 'good'. The majority were satisfied with the learning platform, the course content and the lesson duration. Most learners thought they would be able to apply the knowledge in practice. Almost 100% of the learners would recommend the modules to others and would also study future modules. Suggested improvements were an interactive forum, more practical examples in the lessons and practical exercises. Conclusion This e-learning course in pharmacovigilance based on microlearning was well received with a global coverage among relevant professional disciplines.
Over a period of 3 years, the European Union’s Innovative Medicines Initiative WEB-RADR project has explored the value of social media (i.e., information exchanged through the internet, typically via online social networks) for identifying adverse events as well as for safety signal detection. Many patients and clinicians have taken to social media to discuss their positive and negative experiences of medications, creating a source of publicly available information that has the potential to provide insights into medicinal product safety concerns. The WEB-RADR project has developed a collaborative English language workspace for visualising and analysing social media data for a number of medicinal products. Further, novel text and data mining methods for social media analysis have been developed and evaluated. From this original research, several recommendations are presented with supporting rationale and consideration of the limitations. Recommendations for further research that extend beyond the scope of the current project are also presented.
Background Despite the significant effect of computerized physician order entry (CPOE) in reducing nonintercepted medication errors among neonatal inpatients, only a minority of hospitals have successfully implemented such systems. Physicians' resistance and users' frustration seem to be two of the most important barriers. One solution might be to involve nurses in the order entry process to reduce physicians’ data entry workload and resistance. However, the effect of this collaborative order entry method in reducing medication errors should be compared with a strictly physician order entry method.Objective To investigate whether a collaborative order entry method consisting of nurse order entry (NOE) followed by physician verification and countersignature is as effective as a strictly physician order entry (POE) method in reducing nonintercepted dose and frequency medication errors in the neonatal ward of an Iranian teaching hospital.Methods A four-month prospective study was designed with two equal periods. During the first period POE was used and during the second period NOE was used. In both methods, a warning appeared when the dose or frequency of the prescribed medication was incorrect that suggested the appropriate dosage to the physicians. Physicians’ responses to the warnings were recorded in a database and subsequently analyzed. Relevant paper-based and electronic medical records were reviewed to increase credibility.Results Medication prescribing for 158 neonates was studied. The rate of nonintercepted medication errors during the NOE period was 40% lower than during the POE period (rate ratio 0.60; 95% confidence interval [CI] .50, .71;P < .001). During the POE period, 80% of nonintercepted errors occurred at the prescription stage, while during the NOE period, 60% of nonintercepted errors occurred in that stage. Prescription errors decreased from 10.3% during the POE period to 4.6% during the NOE period (P < .001), and the number of warnings with which physicians complied increased from 44% to 68% respectively (P < .001). Meanwhile, transcription errors showed a nonsignificant increase from the POE period to the NOE period. The median error per patient was reduced from 2 during the POE period to 0 during the NOE period (P = .005). Underdose and curtailed and prolonged interval errors were significantly reduced from the POE period to the NOE period. The rate of nonintercepted overdose errors remained constant between the two periods. However, the severity of overdose errors was lower in the NOE period (P = .02).ConclusionsNOE can increase physicians' compliance with warnings and recommended dose and frequency and reduce nonintercepted medication dosing errors in the neonatal ward as effectively as POE or even better. In settings where there is major physician resistance to implementation of CPOE, and nurses are willing to participate in the order entry and are capable of doing so, NOE may be considered a beneficial alternative order entry method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.