In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife-livestock interface, we investigated patterns of peste des petits
Optimal management of free-ranging herbivores requires the accurate assessment of an animal’s nutritional status. For this purpose ‘near-infrared reflectance spectroscopy’ (NIRS) is very useful, especially when nutritional assessment is done through faecal indicators such as faecal nitrogen (FN). In order to perform an NIRS calibration, the default protocol recommends starting by generating an initial equation based on at least 50–75 samples from the given species. Although this protocol optimises prediction accuracy, it limits the use of NIRS with rare or endangered species where sample sizes are often small. To overcome this limitation we tested a single NIRS equation (i.e., multispecies calibration) to predict FN in herbivores. Firstly, we used five herbivore species with highly contrasting digestive physiologies to build monospecies and multispecies calibrations, namely horse, sheep, Pyrenean chamois, red deer and European rabbit. Secondly, the equation accuracy was evaluated by two procedures using: (1) an external validation with samples from the same species, which were not used in the calibration process; and (2) samples from different ungulate species, specifically Alpine ibex, domestic goat, European mouflon, roe deer and cattle. The multispecies equation was highly accurate in terms of the coefficient of determination for calibration R2 = 0.98, standard error of validation SECV = 0.10, standard error of external validation SEP = 0.12, ratio of performance to deviation RPD = 5.3, and range error of prediction RER = 28.4. The accuracy of the multispecies equation to predict other herbivore species was also satisfactory (R2 > 0.86, SEP < 0.27, RPD > 2.6, and RER > 8.1). Lastly, the agreement between multi- and monospecies calibrations was also confirmed by the Bland-Altman method. In conclusion, our single multispecies equation can be used as a reliable, cost-effective, easy and powerful analytical method to assess FN in a wide range of herbivore species.
Changes in land-use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species-specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land-use practices and climate conditions.
In alpine habitats, the seasonally marked climatic conditions generate seasonal and spatial differences in forage availability for herbivores. Vegetation availability and quality during the growing season are known to drive life history traits of mountain ungulates. However, little effort has been made to understand the association between plant phenology and changes in the foraging strategies of these mountain dwellers. Furthermore, this link can be affected by the seasonal presence of livestock in the same meadows. The objective of this work was to study the seasonal changes in diet composition of Pyrenean chamois (Rupicapra p. pyrenaica) and its relationship to primary production trends in a Mediterranean alpine environment. Moreover, diet composition in two populations with contrasting livestock pressure was compared in order to study the effect of sheep flocks on the feeding behaviour of chamois. From 2009 to 2012, monthly diet composition was estimated by cuticle microhistological analysis of chamois faeces collected in the eastern Pyrenees. The primary production cycle was assessed by remote sensing, using the Normalized Difference Vegetation Index. Additionally, the diet of sheep sharing seasonally the subalpine and alpine meadows with chamois was analysed. Diet selection of chamois and sheep and their overlap was also assessed. Our results show an intra-annual variation in the diet composition of Pyrenean chamois and demonstrate a strong relationship between plant consumption dynamics and phenology in alpine areas. In addition, Calluna vulgaris, Cytisus spp. and Festuca spp., as well as forbs in the summer, are found to be key forage species for Pyrenean chamois. Furthermore, this study couldn’t detect differences between both chamois populations despite the presence of sheep flocks in only one area. However, the detection of a shift in the diet of chamois in both areas after the arrival of high densities of multi-specific livestock suggest a general livestock effect. In conclusion, Pyrenean chamois are well adapted to the variations in the seasonal availability of plants in alpine habitats but could be disturbed by the seasonal presence of livestock. Due to the key plants in their diet, we suggest that population management programmes should focus on the preservation of mixed grasslands composed of patches of shrubs and herbs. The effects of climate change and shrub expansion should be studied as they may potentially affect chamois population dynamics through changes in habitat composition and temporal shifts in forage availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.