Variability in the rate and extent of absorption, distribution and elimination of ethanol has important ramifications in clinical and legal medicine. The speed of absorption of ethanol from the gut depends on time of day, drinking pattern, dosage form, concentration of ethanol in the beverage, and particularly the fed or fasting state of the individual. During the absorption phase, a concentration gradient exists between the stomach, portal vein and the peripheral venous circulation. First-pass metabolism and bioavailability are difficult to assess because of dose-, time- and flow-dependent kinetics. Ethanol is transported by the bloodstream to all parts of the body. The rate of equilibration is governed by the ratio of blood flow to tissue mass. Arterial and venous concentrations differ as a function of time after drinking. Ethanol has low solubility in lipids and does not bind to plasma proteins, so volume of distribution is closely related to the amount of water in the body, contributing to sex- and age-related differences in disposition. The bulk of ethanol ingested (95-98%) is metabolised and the remainder is excreted in breath, urine and sweat. The rate-limiting step in oxidation is conversion of ethanol into acetaldehyde by cytosolic alcohol dehydrogenase (ADH), which has a low Michaelis-Menten constant (Km) of 0.05-0.1 g/L. Moreover, this enzyme displays polymorphism, which accounts for racial and ethnic variations in pharmacokinetics. When a moderate dose is ingested, zero-order elimination operates for a large part of the blood-concentration time course, since ADH quickly becomes saturated. Another ethanol-metabolising enzyme, cytochrome P450 2E1, has a higher Km (0.5-0.8 g/L) and is also inducible, so that the clearance of ethanol is increased in heavy drinkers. Study design influences variability in blood ethanol pharmacokinetics. Oral or intravenous administration, or fed or fasted state, might require different pharmacokinetic models. Recent work supports the need for multicompartment models to describe the disposition of ethanol instead of the traditional one-compartment model with zero-order elimination. Moreover, appropriate statistical analysis is needed to isolate between- and within-subject components of variation. Samples at low blood ethanol concentrations improve the estimation of parameters and reduce variability. Variability in ethanol pharmacokinetics stems from a combination of both genetic and environmental factors, and also from the nonlinear nature of ethanol disposition, experimental design, subject selection strategy and dose dependency. More work is needed to document variability in ethanol pharmacokinetics in real-world situations.
The pharmacokinetics and bioavailability of N-acetylcysteine (NAC) have been determined after its intravenous and oral administration to 6 healthy volunteers. According to a randomized cross-over design each subject received NAC 200 mg i.v. and 400 mg p.o., and blood samples were collected for 30 h. Reduced NAC had a volume of distribution (VSS) of 0.59 l.kg-1 and a plasma clearance of 0.84 l.h-1.kg-1. The terminal half-life after intravenous administration was 1.95 h. The oral bioavailability was 4.0%. Based on total NAC concentration, its volume of distribution (VSS) was 0.47 l.kg-1 and its plasma clearance was 0.11 l.h-1.kg-1. The terminal half-life was 5.58 h after intravenous administration and 6.25 h after oral administration. Oral bioavailability of total NAC was 9.1%.
Tolterodine is extensively metabolized by CYP2D6 with high specificity. Despite the effect on pharmacokinetics, the CYP2D6 polymorphism does not appear to be of great importance in the antimuscarinic effect, probably because of the additive action of parent drug and active metabolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.