Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate changes results in a much simplified system of differential equations for the streamlines ͑a normal form͒ encapsulating all the features of the original system. From this, we obtain a complete description of bifurcations up to codimension three close to a simple linear degeneracy. As a special case we develop the theory for flows with reflectional symmetry. We show that all the patterns obtained can be realized in steady Navier-Stokes or Stokes flow, but an unresolved difficulty arises in the symmetric case for Navier-Stokes flow. The theory is applied to the patterns and bifurcations found numerically in two recent studies of Stokes flow in confined domains.
Bakker's work is revisited in a more general setting allowing a curvature of the fixed wall and a time dependence of the streamlines. The velocity field is expanded at a point on the wall, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate changes results in a much simplified system of differential equations for the streamlines (a normal form) encapsulating all the features of the original system. From this, a complete description of bifurcations up to codimension three close to a simple linear degeneracy is obtained. Further, the case of a non-simple degeneracy is considered. Finally the effect of the Navier-Stokes equations on the local topology is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.