Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment growing into the parasite-specific P-pocket in the enzyme binding site. The resulting catechol pyrazolinones act as potent TbrPDEB1 inhibitors with IC₅₀ values down to 49 nM. The compounds also block parasite proliferation (e.g., VUF13525 (20b): T. brucei rhodesiense IC₅₀ = 60 nM, T. brucei brucei IC₅₀ = 520 nM, T. cruzi = 7.6 μM), inducing a typical multiple nuclei and kinetoplast phenotype without being generally cytotoxic. The mode of action of 20b was investigated with recombinantly engineered trypanosomes expressing a cAMP-sensitive FRET sensor, confirming a dose-response related increase of intracellular cAMP levels in trypanosomes. Our findings further validate the TbrPDEB family as antitrypanosomal target.
Several trypanosomatid
cyclic nucleotide phosphodiesterases (PDEs)
possess a unique, parasite-specific cavity near the ligand-binding
region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug
target for the treatment of African sleeping sickness. Here, we elucidate
the molecular determinants of inhibitor binding and reveal that the
P-pocket is amenable to directed design. By iterative cycles of design,
synthesis, and pharmacological evaluation and by elucidating the structures
of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have
developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective
TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008)
and 9 (NPD-039), were potent (Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects
(IC50 = 5.5 and 6.7 μM, respectively). Treatment
of parasites with 8 caused an increase in intracellular
cyclic adenosine monophosphate (cAMP) levels and severe disruption
of T. brucei cellular organization, chemically validating
trypanosomal PDEs as therapeutic targets in trypanosomiasis.
Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4nM) and TbrPDEB2 (IC50: 3nM) (J. Infect. Dis.2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.
The synthesis and enzymatic resolution of a novel vinylsilane‐containing amino acid is described. Derivatization of this and other olefinic amino acids followed by subjection to standard N‐acyliminium ion cyclization conditions provides the corresponding pipecolic acid derivatives with – in most cases – complete conservation of enantiopurity. In addition to studying the scope of this reaction, details of the N‐acyliminium ion cyclization including an aza Cope equilibrium are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.