During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated.
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis.
Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.