Abstract1. Ecological count data (e.g., number of individuals or species) are often log-transformed to satisfy parametric test assumptions.2. Apart from the fact that generalized linear models are better suited in dealing with count data, a log-transformation of counts has the additional quandary in how to deal with zero observations. With just one zero observation (if this observation represents a sampling unit), the whole dataset needs to be fudged by adding a value (usually 1) before transformation. 3. Simulating data from a negative binomial distribution, we compared the outcome of fitting models that were transformed in various ways (log, square-root) with results from fitting models using Poisson and negative binomial models to untransformed count data. 4. We found that the transformations performed poorly, except when the dispersion was small and the mean counts were large. The Poisson and negative binomial models consistently performed well, with little bias.
No abstract
Summary Urban green areas are becoming increasingly recognized for their biodiversity potential. However, little is known about how urbanization shapes cryptic species communities, such as those residing in deadwood. In this study, we investigated downed Norway spruce trunks at intermediate stages of decay, in urban and semi‐natural forests in southern Finland. To understand the interconnections between landscape context, deadwood characteristics and wood‐inhabiting fungal communities, we studied structural characteristics, surface epiphyte cover and internal moisture and temperature conditions of the tree trunks, and fungal communities residing in the wood. Our findings showed that urban tree trunks had less epiphyte cover and lower moisture than trunks in semi‐natural forests. Overall, urban forests provide less favourable habitats for a majority of the dominant wood‐inhabiting fungal species and for red‐listed species as a group. Yet, 33% of urban trunks hosted at least one red‐listed species. While these landscape‐scale effects may be driven by local climatic conditions as well as contingencies related to available species pools, our results also highlight the significance of substrate‐scale variability of deadwood in shaping wood‐inhabiting fungal communities. We show that epiphyte cover is a significant driver or indicator of these small‐scale dynamic processes in deadwood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.