Abstract. The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air–sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (∼ 2∘) atmosphere–land resolution and one with medium (∼ 1∘) atmosphere–land resolution. The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2 are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario.
Proxy-based reconstructions of climate variability over the last millennium provide important insights for understanding current climate change within a long-term context. Past hydrological changes are particularly difficult to reconstruct, yet rainfall patterns and variability are among the most critical environmental variables. Ombrotrophic bogs, entirely dependent on water from precipitation and sensitive to changes in the balance between precipitation and evapotranspiration, are highly suitable for such hydro-climate reconstructions. We present a multi-proxy analysis (testate amoebae, plant macrofossils, stable carbon isotopes in Sphagnum, pollen, spores and macroscopic charcoal) from an ombrotrophic peat profile from the Rodna Mountains (northern Romania) to establish a quantitative record of hydro-climatic changes. We identify five main stages: wet surface mire conditions between AD 800 and 1150 and AD 1800 and 1950, and drying of the mire surface between AD 1300 and 1450, AD 1550 and 1750 and AD 1950 and 2012. Our multi-proxy reconstructions suggest that conditions during the Medieval Climate Anomaly (MCA) period (AD 900–1150) were considerably wetter than today, while during most of the ‘Little Ice Age’ (LIA; AD 1500–1850), they were dry. Mire surface conditions in the Rodna Mountains have dried markedly over the last 40 years mainly as a result of anthropogenic climate change approaching the driest conditions seen over the last 1000 years. There is a marked difference between current hydro-climatic conditions (dry mire) and those of the MCA (wet mire). This implies that for the study region, the MCA cannot provide analogous climatic conditions to the contemporary situation. Our reconstructions are in partial agreement with water table estimates elsewhere in central and eastern Europe but generally contrast with those from NW Europe, especially during LIA. We suggest that these distinctive regional differences result from fluctuations in large-scale atmospheric circulation, which determine the relative influences of continental and oceanic air masses.
Aim The forest steppe of the Transylvanian Plain is a landscape of exceptionally diverse steppe-like and semi-natural grasslands. Is this vegetation a remnant of a once continuous temperate forest extensively cleared by humans, or has the area, since the last glacial, always been a forest steppe? Understanding the processes that drive temperate grassland formation is important because effective management of this biome is critical to the conservation of the European cultural landscape.Location Lake Stiucii, north-western Romania, central-eastern Europe.Methods We analysed multi-proxy variables (pollen, coprophilous fungi, plant macroremains, macrocharcoal) from a 55,000 year discontinuous sequence (c. 55,000-35,000; 13,000-0 cal. yr bp), integrating models of pollenbased vegetation cover, biome reconstruction, global atmospheric simulations and archaeological records.Results Needleleaf woodland occurred during glacial Marine Isotope Stage (MIS) 3, but contracted at the end of this period. Forest coverage of c. 55% (early Holocene) and 65% (mid-Holocene) prevailed through the Holocene, but Bronze Age humans extensively cleared forests after 3700 cal. yr bp. Forest coverage was most widespread between 8600 and 3700 cal. yr bp, whereas grasses, steppe and xerothermic forbs were most extensive between 11,700 and 8600 cal. yr bp and during the last 3700 cal. yr bp. Cerealia pollen indicate the presence of arable agriculture by c. 7000 cal. yr bp. Main conclusionsWe have provided the first unequivocal evidence for needleleaf woodland during glacial MIS 3 in this region. Extensive forests prevailed prior to 3700 cal. yr bp, challenging the hypothesis that the Transylvanian lowlands were never wooded following the last glaciation. However, these forests were never fully closed either, reflecting dry growing season conditions, recurrent fires and anthropogenic impacts, which have favoured grassland persistence throughout the Holocene. The longevity of natural and semi-natural grasslands in the region may explain their current exceptional biodiversity. This longer-term perspective implies that future climatic warming and associated fire will maintain these grasslands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.