ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.Note: This is a freely distributable postprint, which does not reflect final copyediting and typesetting of the published article, to be cited as: Markkula, G., Engström, J., Lodin, J., Bärgman, J., Victor, T., 2016. A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies. Accident Analysis & Prevention, xx(x), xxxx-xxxx. Abstract: Driver braking behavior was analyzed using time-series recordings from naturalistic rear-end conflicts (116 crashes and 241 near-crashes), including events with and without visual distraction among drivers of cars, heavy trucks, and buses. A simple piecewise linear model could be successfully fitted, per event, to the observed driver decelerations, allowing a detailed elucidation of when drivers initiated braking and how they controlled it. Most notably, it was found that, across vehicle types, driver braking behavior was strongly dependent on the urgency of the given rear-end scenario's kinematics, quantified in terms of visual looming of the lead vehicle on the driver's retina. In contrast with previous suggestions of brake reaction times (BRTs) of 1.5 s or more after onset of an unexpected hazard (e.g., brake light onset), it was found here that braking could be described as typically starting less than a second after the kinematic urgency reached certain threshold levels, with even faster reactions at higher urgencies. The rate at which drivers then increased their deceleration (towards a maximum) was also highly dependent on urgency. Probability distributions are provided that quantitatively capture these various patterns of kinematics-dependent behavioral response. Possible underlying mechanisms are suggested, including looming response thresholds and neural evidence accumulation. These accounts argue that a naturalistic braking response should not be thought of as a slow reaction to some single, researcher-defined "hazard onset", but instead as a relatively fast response to the visual looming cues that build up later on in the evolving traffic scenario.
Objective: This paper aims to describe and test novel computational driver models, predicting drivers’ brake reaction times (BRTs) to different levels of lead vehicle braking, during driving with cruise control (CC) and during silent failures of adaptive cruise control (ACC). Background: Validated computational models predicting BRTs to silent failures of automation are lacking but are important for assessing the safety benefits of automated driving. Method: Two alternative models of driver response to silent ACC failures are proposed: a looming prediction model, assuming that drivers embody a generative model of ACC, and a lower gain model, assuming that drivers’ arousal decreases due to monitoring of the automated system. Predictions of BRTs issued by the models were tested using a driving simulator study. Results: The driving simulator study confirmed the predictions of the models: (a) BRTs were significantly shorter with an increase in kinematic criticality, both during driving with CC and during driving with ACC; (b) BRTs were significantly delayed when driving with ACC compared with driving with CC. However, the predicted BRTs were longer than the ones observed, entailing a fitting of the models to the data from the study. Conclusion: Both the looming prediction model and the lower gain model predict well the BRTs for the ACC driving condition. However, the looming prediction model has the advantage of being able to predict average BRTs using the exact same parameters as the model fitted to the CC driving data. Application: Knowledge resulting from this research can be helpful for assessing the safety benefits of automated driving.
Abstract-Fuel used by heavy duty trucks is a major cost for logistics companies, and therefore improvements in this area are highly desired. Many of the factors that influence fuel consumption, such as the road type, vehicle configuration or external environment, are difficult to influence. One of the most under-explored ways to lower the costs is training and incentivizing drivers. However, today it is difficult to measure driver performance in a comprehensive way outside of controlled, experimental setting. This paper proposes a machine learning methodology for quantifying and qualifying driver performance, with respect to fuel consumption, that is suitable for naturalistic driving situations. The approach is a knowledge-based feature extraction technique, constructing a normalizing fuel consumption value denoted Fuel under Predefined Conditions (FPC), which captures the effect of factors that are relevant but are not measured directly.The FPC, together with information available from truck sensors, is then compared against the actual fuel used on a given road segment, quantifying the effects associated with driver behavior or other variables of interest. We show that raw fuel consumption is a biased measure of driver performance, being heavily influenced by other factors such as high load or adversary weather conditions, and that using FPC leads to more accurate results. In this paper we also show evaluation the proposed method using large-scale, real-world, naturalistic database of heavy-duty vehicle operation.
Abstract-Improving the performance of systems is a goal pursued in all areas and vehicles are no exception. In places like Europe, where the majority of goods are transported over land, it is imperative for fleet operators to have the best efficiency, which results in efforts to improve all aspects of truck operations. We focus on drivers and their performance with respect to fuel consumption. Some of relevant factors are not accounted for in available naturalistic data, since it is not feasible to measure them. An alternative is to set up experiments to investigate driver performance but these are expensive and the results are not always conclusive. For example, drivers are usually aware of the experiment's parameters and adapt their behavior. This paper proposes a method that addresses some of the challenges related to categorizing driver performance with respect to fuel consumption in a naturalistic environment. We use expert knowledge to transform the data and explore the resulting structure in a new space. We also show that the regions found in APPES provide useful information related to fuel consumption. The connection between APPES patterns and fuel consumption can be used to, for example, cluster drivers in groups that correspond to high or low performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.