The overall aim of our research is to develop a monitoring system for neonatal intensive care units. Long-term EEG monitoring in newborns require that the electrodes don’t harm the sensitive skin of the baby, an especially relevant feature for premature babies. Our approach to EEG monitoring is based on several electrodes distributed over the head of the baby, and since the weight of the head always will be on some of them, any type of hard electrode will inevitably cause a pressure-point that can irritate the skin. Therefore, we propose the use of soft conductive textiles as EEG electrodes, primarily for neonates, but also for other kinds of unobtrusive long-term monitoring. In this paper we have tested two types of textile electrodes on five healthy adults and compared them to standard high quality electrodes. The acquired signals were compared with respect to morphology, frequency distribution, spectral coherence, correlation and power line interference sensitivity, and the signals were found to be similar in most respects. The good measurement performance exhibited by the textile electrodes indicates that they are feasible candidates for EEG recording, opening the door for long-term EEG monitoring applications.
Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.
The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.
Abstract-There is a need for long term monitoring of the brain during intensive care. This is e.g. the case for newborn babies that have been exposed to hypoxia during delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.