Differential privacy is the de facto standard for protecting privacy in a variety of applications. One of the key challenges is private data release, which is particularly relevant in scenarios where limited information about the desired statistics is available beforehand. Recent work has presented a differentially private data release algorithm that achieves optimal rates of order n −1/d , with n being the size of the dataset and d being the dimension, for the worst-case error over all Lipschitz continuous statistics. This type of guarantee is desirable in many practical applications, as for instance it ensures that clusters present in the data are preserved. However, due to the "slow" rates, it is often infeasible in practice unless the dimension of the data is small. We demonstrate that these rates can be significantly improved to n −1/s when only guarantees over s-sparse Lipschitz continuous functions are required, or to n −1/(s+1) when the data lies on an unknown s-dimensional subspace, disregarding logarithmic factors. We therefore obtain practically meaningful rates for moderate constants s which motivates future work on computationally efficient approximate algorithms for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.