BackgroundThe American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) are nowadays recognized as the world’s most authoritative resuscitation guidelines. Adherence to these guidelines optimizes the management of critically ill patients and increases their chances of survival after cardiac arrest. Despite their availability, suboptimal quality of CPR is still common. Currently, the median hospital survival rate after pediatric in-hospital cardiac arrest is 36%, whereas it falls below 10% for out-of-hospital cardiac arrest. Among emerging information technologies and devices able to support caregivers during resuscitation and increase adherence to AHA guidelines, augmented reality (AR) glasses have not yet been assessed. In order to assess their potential, we adapted AHA Pediatric Advanced Life Support (PALS) guidelines for AR glasses.ObjectiveThe study aimed to determine whether adapting AHA guidelines for AR glasses increased adherence by reducing deviation and time to initiation of critical life-saving maneuvers during pediatric CPR when compared with the use of PALS pocket reference cards.MethodsWe conducted a randomized controlled trial with two parallel groups of voluntary pediatric residents, comparing AR glasses to PALS pocket reference cards during a simulation-based pediatric cardiac arrest scenario—pulseless ventricular tachycardia (pVT). The primary outcome was the elapsed time in seconds in each allocation group, from onset of pVT to the first defibrillation attempt. Secondary outcomes were time elapsed to (1) initiation of chest compression, (2) subsequent defibrillation attempts, and (3) administration of drugs, as well as the time intervals between defibrillation attempts and drug doses, shock doses, and number of shocks. All these outcomes were assessed for deviation from AHA guidelines.ResultsTwenty residents were randomized into 2 groups. Time to first defibrillation attempt (mean: 146 s) and adherence to AHA guidelines in terms of time to other critical resuscitation endpoints and drug dose delivery were not improved using AR glasses. However, errors and deviations were significantly reduced in terms of defibrillation doses when compared with the use of the PALS pocket reference cards. In a total of 40 defibrillation attempts, residents not wearing AR glasses used wrong doses in 65% (26/40) of cases, including 21 shock overdoses >100 J, for a cumulative defibrillation dose of 18.7 Joules per kg. These errors were reduced by 53% (21/40, P<.001) and cumulative defibrillation dose by 37% (5.14/14, P=.001) with AR glasses.ConclusionsAR glasses did not decrease time to first defibrillation attempt and other critical resuscitation endpoints when compared with PALS pocket cards. However, they improved adherence and performance among residents in terms of administering the defibrillation doses set by AHA.
BackgroundDuring pediatric cardiopulmonary resuscitation (CPR), vasoactive drug preparation for continuous infusion is both complex and time-consuming, placing children at higher risk than adults for medication errors. Following an evidence-based ergonomic-driven approach, we developed a mobile device app called Pediatric Accurate Medication in Emergency Situations (PedAMINES), intended to guide caregivers step-by-step from preparation to delivery of drugs requiring continuous infusion.ObjectiveThe aim of our study was to determine whether the use of PedAMINES reduces drug preparation time (TDP) and time to delivery (TDD; primary outcome), as well as medication errors (secondary outcomes) when compared with conventional preparation methods.MethodsThe study was a randomized controlled crossover trial with 2 parallel groups comparing PedAMINES with a conventional and internationally used drugs infusion rate table in the preparation of continuous drug infusion. We used a simulation-based pediatric CPR cardiac arrest scenario with a high-fidelity manikin in the shock room of a tertiary care pediatric emergency department. After epinephrine-induced return of spontaneous circulation, pediatric emergency nurses were first asked to prepare a continuous infusion of dopamine, using either PedAMINES (intervention group) or the infusion table (control group), and second, a continuous infusion of norepinephrine by crossing the procedure. The primary outcome was the elapsed time in seconds, in each allocation group, from the oral prescription by the physician to TDD by the nurse. TDD included TDP. The secondary outcome was the medication dosage error rate during the sequence from drug preparation to drug injection.ResultsA total of 20 nurses were randomized into 2 groups. During the first study period, mean TDP while using PedAMINES and conventional preparation methods was 128.1 s (95% CI 102-154) and 308.1 s (95% CI 216-400), respectively (180 s reduction, P=.002). Mean TDD was 214 s (95% CI 171-256) and 391 s (95% CI 298-483), respectively (177.3 s reduction, P=.002). Medication errors were reduced from 70% to 0% (P<.001) by using PedAMINES when compared with conventional methods.ConclusionsIn this simulation-based study, PedAMINES dramatically reduced TDP, to delivery and the rate of medication errors.
Anesthesia and surgery exert immunomodulatory effects and some authors argue that they may exert additive or synergistic influences on vaccine efficacy and safety. Alternatively, inflammatory responses and fever elicited by vaccines may interfere with the postoperative course. There is a lack of consensus approach among anesthesiologists to the theoretical risk of anesthesia and vaccination. Few studies have assessed the influence of anesthesia and surgery on pediatric vaccine responses. We have undertaken an extensive review of articles published in English between 1970 and 2006 meeting the criteria: measurement of immune parameters following general anesthesia in children. By searching the major medical databases (OVID Medline, PubMed, ISI Web of Science) and references cited in the articles themselves, among 277 articles obtained none examined directly the influence of anesthesia/surgery on vaccine responses. Only 16 original reports assessed the influence of several anesthetic agents on various markers of immunity including lymphocyte numbers and functions. These results are reinterpreted here in view of our current understanding of the immune mechanisms underlying vaccine efficacy and adverse events. We conclude that the immunomodulatory influence of anesthesia during elective surgery is both minor and transient (around 48 h) and that the current evidence does not provide any contraindication to the immunization of healthy children scheduled for elective surgery. However, respecting a minimal delay of 2 days (inactivated vaccines) or 14-21 days (live attenuated viral vaccines) between immunization and anesthesia may be useful to avoid the risk of misinterpretation of vaccine-driven adverse events as postoperative complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.