Evolution drives, and is driven by, demography. A genotype moulds its phenotype’s age patterns of mortality and fertility in an environment; these two patterns in turn determine the genotype’s fitness in that environment. Hence, to understand the evolution of ageing, age patterns of mortality and reproduction need to be compared for species across the tree of life. However, few studies have done so and only for a limited range of taxa. Here we contrast standardized patterns over age for 11 mammals, 12 other vertebrates, 10 invertebrates, 12 vascular plants and a green alga. Although it has been predicted that evolution should inevitably lead to increasing mortality and declining fertility with age after maturity, there is great variation among these species, including increasing, constant, decreasing, humped and bowed trajectories for both long- and short-lived species. This diversity challenges theoreticians to develop broader perspectives on the evolution of ageing and empiricists to study the demography of more species.
Summary1. Integral projection models (IPMs) use information on how an individual's state influences its vital rates -survival, growth and reproduction -to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g. size or age) and covariates (e.g. environment). By combining regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population dynamics, species geographic distributions or life-history strategies. 2. Here, we review important resources for building IPMs and provide a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here, we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing biological patterns. We also present case studies illustrating how IPMs can be used to predict species' geographic distributions and life-history strategies. 3. IPMs can represent a wide range of life histories at any desired level of biological detail. Much of the strength of IPMs lies in the strength of regression models. Many subtleties arise when scaling from vital rate regressions to population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for matrix projection models.
Summary The relationship between the performance of individuals and the surrounding environment is fundamental in ecology and evolutionary biology. Assessing how abiotic and biotic environmental factors influence demographic processes is necessary to understand and predict population dynamics, as well as species distributions and abundances. We searched the literature for studies that have linked abiotic and biotic environmental factors to vital rates and, using structured demographic models, population growth rates of plants. We found 136 studies that had examined the environmental drivers of plant demography. The number of studies has been increasing rapidly in recent years. Based on the reviewed studies, we identify and discuss several major gaps in our knowledge of environmentally driven demography of plants. We argue that some drivers may have been underexplored and that the full potential of spatially and temporally replicated studies may not have been realized. We also stress the need to employ relevant statistical methods and experiments to correctly identify drivers. Moreover, assessments of the relationship between drivers and vital rates need to consider interactive, nonlinear and indirect effects, as well as effects of intraspecific density dependence. Synthesis. Much progress has already been made by using structured population models to link the performance of individuals to the surrounding environment. However, by improving the design and analyses of future studies, we can substantially increase our ability to predict changes in plant population dynamics, abundances and distributions in response to changes in specific environmental drivers. Future environmentally explicit demographic models should also address how genetic changes prompted by selection imposed by environmental changes will alter population trajectories in the face of continued environmental change and investigate the reciprocal feedback between plants and their biotic drivers.
Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.