The time course of signaling via heterotrimeric G proteins is controlled through their activation by G-protein coupled receptors and deactivation through the action of GTPase accelerating proteins (GAPs). Here we identify RGS7 and RGS11 as the key GAPs in the mGluR6 pathway of retinal rod ON bipolar cells that set the sensitivity and time course of light-evoked responses. We showed using electroretinography and single cell recordings that the elimination of RGS7 did not influence dark-adapted light-evoked responses, but the concurrent elimination of RGS11 severely reduced their magnitude and dramatically slowed the onset of the response. In RGS7/RGS11 double-knockout mice, light-evoked responses in rod ON bipolar cells were only observed during persistent activation of rod photoreceptors that saturate rods. These observations are consistent with persistently high G-protein activity in rod ON bipolar cell dendrites caused by the absence of the dominant GAP, biasing TRPM1 channels to the closed state.vision | retina | RGS proteins | signal transduction | synaptic transmission
Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.phototransduction | mathematical modeling | analysis | stochastic S ignal transduction at a single molecular level requires controlled biochemical events occurring in constrained cellular microdomains. Furthermore, intrinsic fluctuations in the events of the transduction pathway generate a noisy background, which sets the limit of detection. Of all of the G-protein cascades in nature, the best understood are those initiated by the absorption of a photon in Drosophila microvilli (1, 2) and in the outer segment (OS) of vertebrate rod photoreceptors (1, 3, 4). Much of the research on vertebrate transduction has used either amphibians or mammals. The rods of both species have been shown to have the remarkable ability to detect single photons of light above background noise (5, 6); and for both a photon closes about 5% of the channels open in darkness. However, amphibian and mammalian rods differ in concentrations and biochemical properties of proteins involved in the light response and by as much as an order of magnitude in the diameter of their disk membranes, where the reactions of the cascade take place. It remains largely unknown how the biochemistry and the rod geometry adapt to guarantee a reliable macroscopic response initiated by a single molecular event.To explore this fundamental question, we developed a model that combines spatially res...
SUMMARY The retina consists of ordered arrays of individual types of neurons for processing vision. Here we show that such order is necessary for intrinsically photosensitive retinal ganglion cells (ipRGCs) to function as irradiance detectors. We found that during development, ipRGCs undergo proximity-dependent Bax-mediated apoptosis. Bax mutant mice exhibit disrupted ipRGC spacing and dendritic stratification with an increase in abnormally localized synapses. ipRGCs are the sole conduit for light input to circadian photoentrainment, and either their melanopsin-based photosensitivity or ability to relay rod-cone input is sufficient for circadian photoentrainment. Remarkably, the disrupted ipRGC spacing does not affect melanopsin-based circadian photoentrainment, but severely impairs rod/cone-driven photoentrainment. We demonstrate reduced rod-cone driven cFos activation and electrophysiological responses in ipRGCs, suggesting that impaired synaptic input to ipRGCs underlies the photoentrainment deficits. Thus, for irradiance detection, developmental apoptosis is necessary for the spacing and connectivity of ipRGCs that underlie their functioning within a neural network.
Visual-pigment absorbance spectra and eye spectral sensitivities were examined in eight populations of opossum shrimp from different light environments. Four Finnish populations, two from the Baltic Sea and two from freshwater lakes, represent Mysis relicta, sensu stricto. The sibling species M. salemaai and M. diluviana are represented by, respectively, two Baltic Sea populations and two populations from freshwater lakes in Idaho, USA. In M. relicta, the visual pigments of the two lake populations were similar (lambda(max)=554.3+/-0.8 nm and 556.4+/-0.4 nm), but significantly red-shifted compared with the sea populations (at 529 and 535 nm) and with M. salemaai (at 521 and 525 nm). All these pigments had only A2 chromophore and the lake/sea difference indicates adaptive evolution of the opsin. In M. diluviana, lambda(max) varied in the range 505-529 nm and the shapes of spectra suggested varying A1/A2 chromophore proportions, with pure A1 in the 505 nm animals. Eye sensitivity spectra were flatter and peaked at longer wavelengths than the relevant visual-pigment templates, but declined with the same slope beyond ca. 700 nm. The deviations from visual-pigment spectra can be explained by ocular light filters based on three types of identified screening pigments.
In rod photoreceptors, several phototransduction components display light-dependent translocation between cellular compartments. Notably, the G protein transducin translocates from rod outer segments to inner segments/spherules in bright light, but the functional consequences of translocation remain unclear. We generated transgenic mice where light-induced transducin translocation is impaired. These mice exhibited slow photoreceptor degeneration, which was prevented if they were dark-reared. Physiological recordings showed that control and transgenic rods and rod bipolar cells displayed similar sensitivity in darkness. After bright light exposure, control rods were more strongly desensitized than transgenic rods. However, in rod bipolar cells, this effect was reversed; transgenic rod bipolar cells were more strongly desensitized than control. This sensitivity reversal indicates that transducin translocation in rods enhances signaling to rod bipolar cells. The enhancement could not be explained by modulation of inner segment conductances or the voltage sensitivity of the synaptic Ca 2+ current, suggesting interactions of transducin with the synaptic machinery.retina | adaptation | presynaptic modulation | SNARE complex | palmitoylation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.