Evolutionary rescue occurs when a population genetically adapts to a new stressful environment that would otherwise cause its extinction. Forecasting the probability of persistence under stress, including emergence of drug resistance as a special case of interest, requires experimentally validated quantitative predictions. Here, we propose general analytical predictions, based on diffusion approximations, for the probability of evolutionary rescue. We assume a narrow genetic basis for adaptation to stress, as is often the case for drug resistance. First, we extend the rescue model of Orr & Unckless (
Am. Nat.
2008
172
, 160–169) to a broader demographic and genetic context, allowing the model to apply to empirical systems with variation among mutation effects on demography, overlapping generations and bottlenecks, all common features of microbial populations. Second, we confront our predictions of rescue probability with two datasets from experiments with
Saccharomyces cerevisiae
(yeast) and
Pseudomonas fluorescens
(bacterium). The tests show the qualitative agreement between the model and observed patterns, and illustrate how biologically relevant quantities, such as the
per capita
rate of rescue, can be estimated from fits of empirical data. Finally, we use the results of the model to suggest further, more quantitative, tests of evolutionary rescue theory.
The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.