We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sumrank metric. The speed-ups are achieved by new algorithms that reduce the cores of the underlying computational problems of the decoders to one common tool: computing left and right approximant bases of matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue of the existing PM-Basis algorithm for matrices over ordinary polynomials. This captures the bulk of the work in multiplication of skew polynomials, and the complexity benefit comes from existing algorithms performing this faster than in classical quadratic complexity. The new algorithms for the various decoding-related computational problems are interesting in their own and have further applications, in particular parts of decoders of several other codes and foundational problems related to the remainderevaluation of skew polynomials.
We present a new general construction of MDS codes over a finite field Fq. We describe two explicit subclasses which contain new MDS codes of length at least q/2 for all values of q ≥ 11. Moreover, we show that most of the new codes are not equivalent to a Reed-Solomon code.
We present a generalisation of Twisted Reed-Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for codebased cryptography: These codes resist some existing structural attacks for Reed-Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.
For many algebraic codes the main part of decoding can be reduced to row reduction of a module basis, enabling general, flexible and highly efficient algorithms. Inspired by this, we develop an approach of transforming matrices over skew polynomial rings into certain normal forms. We apply this to solve generalised shift register problems, or Padé approximations, over skew polynomial rings which occur in error and erasure decoding -Interleaved Gabidulin codes. We obtain an algorithm with complexity O( µ 2 ) where µ measures the size of the input problem. Further, we show how to listdecode Mahdavifar-Vardy subspace codes in O( r 2 m 2 ) time, where m is a parameter proportional to the dimension of the codewords' ambient space and r is the dimension of the received subspace.
We derive the Wu list-decoding algorithm for Generalised Reed-Solomon (GRS) codes by using Gröbner bases over modules and the Euclidean algorithm (EA) as the initial algorithm instead of the Berlekamp-Massey algorithm (BMA). We present a novel method for constructing the interpolation polynomial fast. We give a new application of the Wu list decoder by decoding irreducible binary Goppa codes up to the binary Johnson radius. Finally, we point out a connection between the governing equations of the Wu algorithm and the Guruswami-Sudan algorithm (GSA), immediately leading to equality in the decoding range and a duality in the choice of parameters needed for decoding, both in the case of GRS codes and in the case of Goppa codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.