To inform the future practices to be employed for handling waste water and grey water at the Swedish Antarctic station, Wasa, in Dronning Maud Land, the Swedish Polar Research Secretariat took the initiative to survey the practices of the 28 nations with stations in Antarctica. A questionnaire was sent out to all members of the Antarctic Environment Officers Network during the autumn of 2005. Questions were asked about the handling of waste water and grey water, the type of sewage treatment, and installation and operational costs. The response to the questionnaire was very good (79%), and the results showed that 37% of the permanent stations and 69% of the summer stations lack any form of treatment facility. When waste water and grey water containing microorganisms are released, these microorganisms can remain viable in low‐temperature Antarctic conditions for prolonged periods. Microorganisms may also have the potential to infect and cause disease, or become part of the gut flora of local bird and mammal populations, and fish and marine invertebrates. The results from 71 stations show that much can still be done by the 28 nations operating the 82 research stations in Antarctica. The technology exists for effective waste water treatment in the challenging Antarctic conditions. The use of efficient technology at all permanent Antarctic research stations would greatly reduce the human impact on the pristine Antarctic environment. In order to protect the Antarctic environment from infectious agents introduced by humans, consideration should also be given to preventing the release of untreated waste water and grey water from the smaller summer stations.
To inform the future practices to be employed for handling waste water and grey water at the Swedish Antarctic station, Wasa, in Dronning Maud Land, the Swedish Polar Research Secretariat took the initiative to survey the practices of the 28 nations with stations in Antarctica. A questionnaire was sent out to all members of the Antarctic Environment Officers Network during the autumn of 2005. Questions were asked about the handling of waste water and grey water, the type of sewage treatment, and installation and operational costs. The response to the questionnaire was very good (79%), and the results showed that 37% of the permanent stations and 69% of the summer stations lack any form of treatment facility. When waste water and grey water containing microorganisms are released, these microorganisms can remain viable in lowtemperature Antarctic conditions for prolonged periods. Microorganisms may also have the potential to infect and cause disease, or become part of the gut flora of local bird and mammal populations, and fish and marine invertebrates. The results from 71 stations show that much can still be done by the 28 nations operating the 82 research stations in Antarctica. The technology exists for effective waste water treatment in the challenging Antarctic conditions. The use of efficient technology at all permanent Antarctic research stations would greatly reduce the human impact on the pristine Antarctic environment. In order to protect the Antarctic environment from infectious agents introduced by humans, consideration should also be given to preventing the release of untreated waste water and grey water from the smaller summer stations.
We experimentally evaluated the impact of the introduced signal crayfish (Pacifastacus leniusculus) and the native noble crayfish (Astacus astacus) on eggs and larvae of seven species of amphibians, likely to co-occur with crayfish in southern Sweden. In aquarium experiments eggs and tadpoles of all amphibian species were consumed by both crayfish species. The consumption of amphibian eggs by signal crayfish increased with temperature. The noble crayfish consumed more tadpoles than the signal crayfish, but the latter caused more sub-lethal damage to tadpoles. Tadpoles of the common toad (Bufo bufo) were sometimes killed but left uneaten by both crayfish species. In pool experiments, signal crayfish consumed more tadpoles of Hyla arborea in a less complex habitat and significantly reduced survival of Hyla tadpoles and the biomass of aquatic macrophytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.