To improve the management of the European eel (Anguilla anguilla) in freshwater, it is essential to define important lotic habitats. Electrofishing data from 289 wadeable, hard-bottom sites in 69 Swedish coastal rivers and streams, originally surveyed for salmonid monitoring, were used to evaluate the effects of sampling-and habitat-related factors on eel occurrence. Probability of eel occurrence, as influenced by sampling procedure (sampled area, number of consecutive runs and ambient water temperature) and habitat characteristics (size of catchment, dominating bottom substrate, shade, water velocity, mean depth), was evaluated for small (total length B 150 mm) and large ([ 150 mm) yellow eels. Data were analysed in a mixed presence/absence generalized linear model with dispersal (distance to mouth from sampled site), habitat and samplingrelated variables as covariates. The two models explained variation in occurrence to 81.5% for small eel and 76.2% for large eel. Probability of eel occurrence decreased with distance from the river mouth, and increased with sampled area, number of runs, water temperature, coarser substrate and size of river. We suggest that future eel habitat restoration should focus on lower reaches of larger rivers with suitable coarse bottom habitats. Stocking of young eel should be carried out in comparable accessible habitats in the upper reaches where eel densities are low. The results also strongly indicate that eel may be sampled together with young salmonids with DC electrofishing in wadeable habitats.
Conservation programmes for endangered, long-lived and migratory species often have to target multiple life stages. The bottlenecks associated with the survival of juvenile anguillid eels migrating into inland waters, the survival and growth of the freshwater life stage, as well as the recruitment and survival of silver eels, migrating back to the ocean to spawn, must be resolved. In this study, we focus on the efficiency of passage solutions for upstream-migrating juveniles. Such solutions can consist of inclined ramps lined with wetted climbing substrata. We evaluated different commonly used substrata in a controlled experiment, recorded eel behaviour at the entrance of the ramp with infrared videography and validated the experimental results at a hydropower dam, where we also investigated the effects of ramp placement on performance. In the experiment on eel substratum selection, 40% of the eels passed in lanes with studded substratum, whereas only 21 and 5% passed using open weave and bristle substrata respectively. Video analysis revealed that the studded substratum attracted more approaches and initiated climbs than the other substrata, but once a climb had been initiated, passage success rates did not differ between substrata. Eels using the studded substratum climbed 26% faster than those using the bristle substratum and almost four times as fast as those climbing in the open weave. The superior performance of the studded substratum was supported by data from the field validation. Moreover, ramps positioned by the bank with low water velocities caught the most eels, but proximity to the dam had no effect on performance. To strengthen the European eel population, more juveniles need to reach their freshwater feeding grounds. A critical step to achieve this increase is to equip upstream passage solutions with suitable substrata and to optimize ramp placement at migration obstacles.
Many diadromous fish populations are declining and at risk of collapse. Lack of river connectivity is a major contributor to these declines, as free migration routes between marine and freshwater habitats are crucial for life‐history completion. For the conservation and ultimately recovery of such species, it is imperative that remedial measures aimed at increasing connectivity are effective. This study investigated the distribution patterns of ascending juvenile European eel (Anguilla anguilla L.) in rivers in south‐western Sweden, with a focus on the effects of barriers and measures that aim to reduce the impact of barriers, i.e. fish‐passage solutions (FPSs). Eel occurrence data were spatially and temporally integrated with the national databases of dams and FPSs in a Geographic Information System (GIS) environment to evaluate their effect on ascending eel distribution. The types of barriers assessed were: (i) dams with nature‐like fishways; (ii) dams with eel ramps; (iii) dams with technical fishways; and (iv) dams without FPSs. Dams fitted with eel ramps or technical fishways, as well as dams without FPSs, produced a significant negative effect on the probability of eel occurrence upstream. This negative effect was not found for dams fitted with nature‐like fishways, indicating that these solutions may function better than the other FPS types in this study. The probability of eel occurrence decreased with distance from the sea and increased with area sampled, number of electrofishing runs, water temperature, and with the size of the bottom substrate. We suggest that future conservation strategies for improving the natural immigration of juvenile eels should include optimizing FPS function (e.g. placement and design), the continued maintenance of FPSs, the construction of nature‐like fishways, and preferably the removal of dams, which will also benefit the downstream migration of maturing eels as well as restoring other ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.