Background: The complex photochemistry of aryl azides has fascinated scientists for several decades. Spectroscopists have investigated the intermediates formed by different analytical techniques. Theoretical chemists have explained the intrinsic interplay of intermediates under different experimental conditions. Objective & Method: A more complete understanding about the photochemistry of a given fluoro aryl azide is a basic requisite for its use in chemistry. In this review, we will discuss the synthesis of several fluoro substituted aryl azides and the reactions and intermediates generated upon photolysis and thermolysis of these azides and some examples of their applications in photoaffinity labeling and organic synthesis. Conclusion: In spite of the extensive research on the photochemistry of fluoro aryl azides, there are some areas that remain to be investigated. The application of this reaction in the synthesis of novel heterocyclic compounds has not been fully studied. Since fluorophenyl azides are known to undergo C-H and N-H insertion reactions, they could be used to prepare new fluorinated molecules or in the biochemical process known as photoaffinity labeling.
Two fast and mild methodologies to prepare nitrophenyl and fluorophenyl azides are presented. These aryl azides are extensively used as crosslinking, photoaffinity labeling, and click chemistry reagents. Substituted aryl azides are prepared by performing a SNAr substitution on halogenated benzenes with a phase‐transfer catalyst (PTC) such as tetraethylammonium tetrafluoroborate (TEATFB), the reaction proceeds in several hours under rather mild temperatures (25°C to 70°C). Furthermore, aryl azides are also prepared within minutes under microwave irradiation at slightly higher temperatures (50°C to 70°C). These procedures could be applied in the preparation of other aryl azides. In the case of substituted pentafluoro benzene (pF), the type of products obtained in each reaction depends on the amount of sodium azide and the strength and position of electron‐withdrawing substituents (COH, COR, COOR, CN, NO2, or F). A discussion on the mechanisms and the products obtained in these SNAr reactions is presented.
No abstract
Aims: Aims: Perform the synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells background: Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have important biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents. Background: Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents. Objective: Synthesize novel fluoro phenyl triazoles via click chemistry and evaluate their anti-proliferative activity Method: First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40 ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells Result: Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom. Conclusion: Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.