Endothelial activation and alteration during dengue virus (DENV) infection are multifactorial events; however, the role of extracellular vesicles (EVs) in these phenomena is not known. In the present study, we characterized the EVs released by DENV-2 infected U937 macrophage cell line and evaluated the changes in the physiology and integrity of the EA.hy926 endothelial cells exposed to them. U937 macrophages were infected, supernatants were collected, and EVs were purified and characterized. Then, polarized endothelial EA.hy926 cells were exposed to the EVs for 24 h, and the transendothelial electrical resistance (TEER), monolayer permeability, and the expression of tight junction and adhesion proteins and cytokines were evaluated. The isolated EVs from infected macrophages corresponded to exosomes and apoptotic bodies, which contained the viral NS3 protein and different miRs, among other products. Exposure of EA.hy926 cells to EVs induced an increase in TEER, as well as changes in the expression of VE-cadherin and ICAM in addition leads to an increase in TNF-α, IP-10, IL-10, RANTES, and MCP-1 secretion. These results suggest that the EVs of infected macrophages transport proteins and miR that induce early changes in the physiology of the endothelium, leading to its activation and eliciting a defense program against damage during first stages of the disease, even in the absence of the virus. OPEN ACCESS Citation: Velandia-Romero ML, Calderón-Peláez MA, Balbás-Tepedino A, Márquez-Ortiz RA, Madroñero LJ, Barreto Prieto A, et al. (2020) Extracellular vesicles of U937 macrophage cell line infected with DENV-2 induce activation in endothelial cells EA.hy926. PLoS ONE 15(1): e0227030. https://doi.org/10.
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Resistance to carbapenems in Klebsiellapneumoniae has been mostly related with the worldwide dissemination of KPC, largely due to the pandemic clones belonging to the complex clonal (CC) 258. To unravel blaKPC post-endemic clinical impact, here we describe clinical characteristics of 68 patients from a high complexity hospital, and the molecular and genetic characteristics of their 139 blaKPC—K.pneumoniae (KPC-Kp) isolates. Of the 26 patients that presented relapses or reinfections, 16 had changes in the resistance profiles of the isolates recovered from the recurrent episodes. In respect to the genetic diversity of KPC-Kp isolates, PFGE revealed 45 different clonal complexes (CC). MLST for 12 representative clones showed ST258 was present in the most frequent CC (23.0%), however, remaining 11 representative clones belonged to non-CC258 STs (77.0%). Interestingly, 16 patients presented within-patient genetic diversity of KPC-Kp clones. In one of these, three unrelated KPC-Kp clones (ST258, ST504, and ST846) and a blaKPC—K.variicola isolate (ST182) were identified. For this patient, complete genome sequence of one representative isolate of each clone was determined. In K.pneumoniae isolates blaKPC was mobilized by two Tn3-like unrelated platforms: Tn4401b (ST258) and Tn6454 (ST504 and ST846), a new NTEKPC-IIe transposon for first time characterized also determined in the K.variicola isolate of this study. Genome analysis showed these transposons were harbored in different unrelated but previously reported plasmids and in the chromosome of a K.pneumoniae (for Tn4401b). In conclusion, in the blaKPC post-endemic dissemination in Colombia, different KPC-Kp clones (mostly non-CC258) have emerged due to integration of the single blaKPC gene in new genetic platforms. This work also shows the intra-patient resistant and genetic diversity of KPC-Kp isolates. This circulation dynamic could impact the effectiveness of long-term treatments.
Among the most serious problems in papaya production are the viruses associated with papaya ringspot and papaya sticky disease (PSD). PSD concerns producers worldwide because its symptoms are extremely aggressive and appear only after flowering. As no resistant cultivar is available, several disease management strategies have been used in affected countries, such as the use of healthy seeds, exclusion of the pathogen, and roguing. In the 1990s, a dsRNA virus, papaya meleira virus (PMeV), was identified in Brazil as the causal agent of PSD. However, in 2016 a second virus, papaya meleira virus 2 (PMeV2), with an ssRNA genome, was also identified in PSD plants. Only PMeV is detected in asymptomatic plants, whereas all symptomatic plants contain both viral RNAs separately packaged in particles formed by the PMeV capsid protein. PSD also affects papaya plants in Mexico, Ecuador, and Australia. PMeV2-like viruses have been identified in the affected plants, but the partner virus(es) in these countries are still unknown. In Brazil, PMeV and PMeV2 reside in laticifers that promote spontaneous latex exudation, resulting in the affected papaya fruit’s sticky appearance. Genes modulated in plants affected by PSD include those involved in reactive oxygen species and salicylic acid signaling, proteasomal degradation, and photosynthesis, which are key plant defenses against PMeV complex infection. However, the complete activation of the defense response is impaired by the expression of negative effectors modulated by the virus. This review presents a summary of the current knowledge of the Carica papaya-PMeV complex interaction and management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.